306 research outputs found

    Irredundant Triangular Decomposition

    Full text link
    Triangular decomposition is a classic, widely used and well-developed way to represent algebraic varieties with many applications. In particular, there exist sharp degree bounds for a single triangular set in terms of intrinsic data of the variety it represents, and powerful randomized algorithms for computing triangular decompositions using Hensel lifting in the zero-dimensional case and for irreducible varieties. However, in the general case, most of the algorithms computing triangular decompositions produce embedded components, which makes it impossible to directly apply the intrinsic degree bounds. This, in turn, is an obstacle for efficiently applying Hensel lifting due to the higher degrees of the output polynomials and the lower probability of success. In this paper, we give an algorithm to compute an irredundant triangular decomposition of an arbitrary algebraic set WW defined by a set of polynomials in C[x_1, x_2, ..., x_n]. Using this irredundant triangular decomposition, we were able to give intrinsic degree bounds for the polynomials appearing in the triangular sets and apply Hensel lifting techniques. Our decomposition algorithm is randomized, and we analyze the probability of success

    Some algebraic properties of differential operators

    Full text link
    First, we study the subskewfield of rational pseudodifferential operators over a differential field K generated in the skewfield of pseudodifferential operators over K by the subalgebra of all differential operators. Second, we show that the Dieudonne' determinant of a matrix pseudodifferential operator with coefficients in a differential subring A of K lies in the integral closure of A in K, and we give an example of a 2x2 matrix differential operator with coefficients in A whose Dieudonne' determiant does not lie in A.Comment: 15 page

    A fitting formula for the merger timescale of galaxies in hierarchical clustering

    Full text link
    We study galaxy mergers using a high-resolution cosmological hydro/N-body simulation with star formation, and compare the measured merger timescales with theoretical predictions based on the Chandrasekhar formula. In contrast to Navarro et al., our numerical results indicate, that the commonly used equation for the merger timescale given by Lacey and Cole, systematically underestimates the merger timescales for minor mergers and overestimates those for major mergers. This behavior is partly explained by the poor performance of their expression for the Coulomb logarithm, \ln (m_pri/m_sat). The two alternative forms \ln (1+m_pri/m_sat) and 1/2\ln [1+(m_pri/m_sat)^2] for the Coulomb logarithm can account for the mass dependence of merger timescale successfully, but both of them underestimate the merger time scale by a factor 2. Since \ln (1+m_pri/m_sat) represents the mass dependence slightly better we adopt this expression for the Coulomb logarithm. Furthermore, we find that the dependence of the merger timescale on the circularity parameter \epsilon is much weaker than the widely adopted power-law \epsilon^{0.78}, whereas 0.94*{\epsilon}^{0.60}+0.60 provides a good match to the data. Based on these findings, we present an accurate and convenient fitting formula for the merger timescale of galaxies in cold dark matter models.Comment: 16 pages, 14 figures, accepted for publication in ApJ, minor changes in the last few sentences of the discussio

    Gravitational detection of a low-mass dark satellite at cosmological distance

    Full text link
    The mass-function of dwarf satellite galaxies that are observed around Local Group galaxies substantially differs from simulations based on cold dark matter: the simulations predict many more dwarf galaxies than are seen. The Local Group, however, may be anomalous in this regard. A massive dark satellite in an early-type lens galaxy at z = 0.222 was recently found using a new method based on gravitational lensing, suggesting that the mass fraction contained in substructure could be higher than is predicted from simulations. The lack of very low mass detections, however, prohibited any constraint on their mass function. Here we report the presence of a 1.9 +/- 0.1 x 10^8 M_sun dark satellite in the Einstein-ring system JVAS B1938+666 at z = 0.881, where M_sun denotes solar mass. This satellite galaxy has a mass similar to the Sagittarius galaxy, which is a satellite of the Milky Way. We determine the logarithmic slope of the mass function for substructure beyond the local Universe to be alpha = 1.1^+0.6_-0.4, with an average mass-fraction of f = 3.3^+3.6_-1.8 %, by combining data on both of these recently discovered galaxies. Our results are consistent with the predictions from cold dark matter simulations at the 95 per cent confidence level, and therefore agree with the view that galaxies formed hierarchically in a Universe composed of cold dark matter.Comment: 25 pages, 7 figures, accepted for publication in Nature (19 January 2012

    Mergers and Mass Accretion Rates in Galaxy Assembly: The Millennium Simulation Compared to Observations of z~2 Galaxies

    Full text link
    Recent observations of UV-/optically selected, massive star forming galaxies at z~2 indicate that the baryonic mass assembly and star formation history is dominated by continuous rapid accretion of gas and internal secular evolution, rather than by major mergers. We use the Millennium Simulation to build new halo merger trees, and extract halo merger fractions and mass accretion rates. We find that even for halos not undergoing major mergers the mass accretion rates are plausibly sufficient to account for the high star formation rates observed in z~2 disks. On the other hand, the fraction of major mergers in the Millennium Simulation is sufficient to account for the number counts of submillimeter galaxies (SMGs), in support of observational evidence that these are major mergers. When following the fate of these two populations in the Millennium Simulation to z=0, we find that subsequent mergers are not frequent enough to convert all z~2 turbulent disks into elliptical galaxies at z=0. Similarly, mergers cannot transform the compact SMGs/red sequence galaxies at z~2 into observed massive cluster ellipticals at z=0. We argue therefore, that secular and internal evolution must play an important role in the evolution of a significant fraction of z~2 UV-/optically and submillimeter selected galaxy populations.Comment: 5 pages, 4 figures, Accepted for publication in Ap

    Red Galaxy Growth and the Halo Occupation Distribution

    Full text link
    We have traced the past 7 Gyr of red galaxy stellar mass growth within dark matter halos. We have determined the halo occupation distribution, which describes how galaxies reside within dark matter halos, using the observed luminosity function and clustering of 40,696 0.2<z<1.0 red galaxies in Bootes. Half of 10^{11.9} Msun/h halos host a red central galaxy, and this fraction increases with increasing halo mass. We do not observe any evolution of the relationship between red galaxy stellar mass and host halo mass, although we expect both galaxy stellar masses and halo masses to evolve over cosmic time. We find that the stellar mass contained within the red population has doubled since z=1, with the stellar mass within red satellite galaxies tripling over this redshift range. In cluster mass halos most of the stellar mass resides within satellite galaxies and the intra-cluster light, with a minority of the stellar mass residing within central galaxies. The stellar masses of the most luminous red central galaxies are proportional to halo mass to the power of a third. We thus conclude that halo mergers do not always lead to rapid growth of central galaxies. While very massive halos often double in mass over the past 7 Gyr, the stellar masses of their central galaxies typically grow by only 30%.Comment: Accepted for publication in the ApJ. 34 pages, 22 Figures, 5 Table

    Shaping the Phase of a Single Photon

    Full text link
    While the phase of a coherent light field can be precisely known, the phase of the individual photons that create this field, considered individually, cannot. Phase changes within single-photon wave packets, however, have observable effects. In fact, actively controlling the phase of individual photons has been identified as a powerful resource for quantum communication protocols. Here we demonstrate the arbitrary phase control of a single photon. The phase modulation is applied without affecting the photon's amplitude profile and is verified via a two-photon quantum interference measurement, which can result in the fermionic spatial behaviour of photon pairs. Combined with previously demonstrated control of a single photon's amplitude, frequency, and polarisation, the fully deterministic phase shaping presented here allows for the complete control of single-photon wave packets.Comment: 4 pages, 4 figure

    Zero Order Estimates for Analytic Functions

    Full text link
    The primary goal of this paper is to provide a general multiplicity estimate. Our main theorem allows to reduce a proof of multiplicity lemma to the study of ideals stable under some appropriate transformation of a polynomial ring. In particular, this result leads to a new link between the theory of polarized algebraic dynamical systems and transcendental number theory. On the other hand, it allows to establish an improvement of Nesterenko's conditional result on solutions of systems of differential equations. We also deduce, under some condition on stable varieties, the optimal multiplicity estimate in the case of generalized Mahler's functional equations, previously studied by Mahler, Nishioka, Topfer and others. Further, analyzing stable ideals we prove the unconditional optimal result in the case of linear functional systems of generalized Mahler's type. The latter result generalizes a famous theorem of Nishioka (1986) previously conjectured by Mahler (1969), and simultaneously it gives a counterpart in the case of functional systems for an important unconditional result of Nesterenko (1977) concerning linear differential systems. In summary, we provide a new universal tool for transcendental number theory, applicable with fields of any characteristic. It opens the way to new results on algebraic independence, as shown in Zorin (2010).Comment: 42 page

    A 700 year-old Pulsar in the Supernova Remnant Kes 75

    Get PDF
    Since their discovery 30 years ago, pulsars have been understood to be neutron stars (NSs) born rotating rapidly (~ 10-100 ms). These neutron stars are thought to be created in supernova explosions involving massive stars, which give rise to expanding supernova remnants (SNRs). With over 220 Galactic SNRs known (Green 1998) and over 1200 radio pulsars detected (Camilo et al. 2000), it is quite surprising that few associations between the two populations have been identified with any certainty. Here we report the discovery of a remarkable 0.3 sec X-ray pulsar, PSR J1846-0258, associated with the supernova remnant Kes 75. With a characteristic age of only 723 yr, consistent with the age of Kes 75, PSR J1846-0258 is the youngest pulsar yet discovered and is being rapidly spun down by torques from a large magnetic dipole of strength ~ 5E13 G, just above the so-called quantum critical field. PSR J1846-0258 resides in this transitional regime where the magnetic field is hypothesized to separate the regular pulsars from the so-called magnetars. PSR J1846-0258 is evidently a Crab-like pulsar, however, its period, spin-down rate, spin-down conversion efficiency, are each an order-of-magnitude greater, likely the result of its extreme magnetic field.Comment: 4 pages, 3 figures, LaTex, emulateapj.sty. Submitted to The Astrophysical Journa

    Hopf algebras in dynamical systems theory

    Full text link
    The theory of exact and of approximate solutions for non-autonomous linear differential equations forms a wide field with strong ties to physics and applied problems. This paper is meant as a stepping stone for an exploration of this long-established theme, through the tinted glasses of a (Hopf and Rota-Baxter) algebraic point of view. By reviewing, reformulating and strengthening known results, we give evidence for the claim that the use of Hopf algebra allows for a refined analysis of differential equations. We revisit the renowned Campbell-Baker-Hausdorff-Dynkin formula by the modern approach involving Lie idempotents. Approximate solutions to differential equations involve, on the one hand, series of iterated integrals solving the corresponding integral equations; on the other hand, exponential solutions. Equating those solutions yields identities among products of iterated Riemann integrals. Now, the Riemann integral satisfies the integration-by-parts rule with the Leibniz rule for derivations as its partner; and skewderivations generalize derivations. Thus we seek an algebraic theory of integration, with the Rota-Baxter relation replacing the classical rule. The methods to deal with noncommutativity are especially highlighted. We find new identities, allowing for an extensive embedding of Dyson-Chen series of time- or path-ordered products (of generalized integration operators); of the corresponding Magnus expansion; and of their relations, into the unified algebraic setting of Rota-Baxter maps and their inverse skewderivations. This picture clarifies the approximate solutions to generalized integral equations corresponding to non-autonomous linear (skew)differential equations.Comment: International Journal of Geometric Methods in Modern Physics, in pres
    • …
    corecore