14,141 research outputs found

    Transverse momentum spectra and elliptic flow in ideal hydrodynamics and geometric scaling

    Full text link
    In an ideal hydrodynamic model, with an equation of state where the confinement-deconfinement transition is a cross-over at Tco=196MeVT_{co}=196 MeV, we have simulated s\sqrt{s}=200 GeV Au+Au collisions. Simultaneous description of the experimental charged particle's pTp_T spectra and elliptic flow require that in central (0-10%) Au+Au collisions, initial energy density scales with the binary collision number density. In less central collisions, experimental data demand scaling with the participant density. Simulation studies also indicate that in central collisions viscous effects are minimal.Comment: 4 pages, 3 figures

    Dark matter and Higgs boson physics

    Full text link
    A vector-like colorless fermion doublet and a singlet added to the Standard Model allow a consistent interpretation of dark matter in terms of the lightest neutral particle, as they may help in obtaining successful gauge coupling unification. We analyze in detail the mass range of the lightest neutral particle below the W mass, i.e. in a range of the parameters where the physics of the Standard Model Higgs boson may be substantially affected either directly or indirectly.Comment: 17 pages, 7 figures. v3: published version (small corrections

    Direct photon production from viscous QGP

    Full text link
    We simulate direct photon production in evolution of viscous QGP medium. Photons from Compton and annihilation processes are considered. Viscous effect on photon production is very strong and reliable simulation is possible only in a limited pTp_T range. For minimally viscous fluid η/s\eta/s=0.08), direct photons can be reliably computed only up to pTp_T \leq 1.3 GeV. With reduced viscosity (η/s\eta/s=0.04), the limit increases to pTp_T \leq 2GeV.Comment: 6 pages, 5 figure

    Di-jet hadron pair correlation in a hydrodynamical model with a quenching jet

    Full text link
    In jet quenching, a hard QCD parton, before fragmenting into a jet of hadrons, deposits a fraction of its energy in the medium, leading to suppressed production of high-pTp_T hadrons. Assuming that the deposited energy quickly thermalizes, we simulate the subsequent hydrodynamic evolution of the QGP fluid. Hydrodynamic evolution and subsequent particle emission depend on the jet trajectories. Azimuthal distribution of excess π\pi^- due to quenching jet, averaged over all the trajectories, reasonably well reproduce the di-hadron correlation as measured by the STAR and PHENIX collaboration in central and in peripheral Au+Au collisions.Comment: 5 pages, 4 figures. Some minor corrections are made in the revised manuscrip

    v4: A small, but sensitive observable for heavy ion collisions

    Full text link
    Higher order Fourier coefficients of the azimuthally dependent single particle spectra resulting from noncentral heavy ion collisions are investigated. For intermediate to large transverse momenta, these anisotropies are expected to become as large as 5 %, and should be clearly measurable. The physics content of these observables is discussed from two different extreme but complementary viewpoints, hydrodynamics and the geometric limit with extreme energy loss.Comment: as published: typos corrected, Fig. 3 slightly improved in numerics and presentatio

    Revised Canonical Quantum Gravity via the Frame Fixing

    Full text link
    We present a new reformulation of the canonical quantum geometrodynamics, which allows to overcome the fundamental problem of the frozen formalism and, therefore, to construct an appropriate Hilbert space associate to the solution of the restated dynamics. More precisely, to remove the ambiguity contained in the Wheeler-DeWitt approach, with respect to the possibility of a (3 + 1)-splitting when the space-time is in a quantum regime, we fix the reference frame (i.e. the lapse function and the shift vector) by introducing the so-called kinematical action; as a consequence the new super-Hamiltonian constraint becomes a parabolic one and we arrive to a Schroedinger-like approach for the quantum dynamics. In the semiclassical limit our theory provides General Relativity in the presence of an additional energy-momentum density contribution coming from no longer zero eigenvalues of the Hamiltonian constraints; the interpretation of these new contributions comes out in natural way as soon as it is recognized that the kinematical action can be recasted in such a way it describes a pressureless, but, in general, non geodesic perfect fluid.Comment: 24 pages, 0 figures, to appear on Int. Jour. Mod. Phys.

    Interpretation of the variability of the <i>β</i> Cephei star <i>λ</i> Scorpii. I. The multiple character

    Get PDF
    We derive accurate values of the orbital parameters of the close binary β Cephei star λ Scorpii. Moreover, we present the first determination of the properties of the triple system to which λ Scorpii belongs. Our analysis is based on a time series of 815 high-resolution spectra, covering a timespan of 14 years. We find a close orbit of 5d.9525days (e=0.26) and a wide orbit of approximately 1082d days (e=0.23). The orbital parameters of the triple star and a spectrum synthesis lead us to conclude that the system is composed of two early-type B stars and a low-mass pre-main-sequence star rather than containing an ultra-massive white dwarf as claimed before. Our proposed configuration is compatible with population synthesis. The radial velocity variations of the primary allow us to confirm the presence of at least one pulsation mode with frequency 4.679410 c d-1 which is subject to the light-time effect in the triple system. A detailed analysis of the complex line-profile variations is described in a subsequent paper

    Blunting the Spike: the CV Minimum Period

    Full text link
    The standard picture of CV secular evolution predicts a spike in the CV distribution near the observed short-period cutoff P_0 ~ 78 min, which is not observed. We show that an intrinsic spread in minimum (`bounce') periods P_b resulting from a genuine difference in some parameter controlling the evolution can remove the spike without smearing the sharpness of the cutoff. The most probable second parameter is different admixtures of magnetic stellar wind braking (at up to 5 times the GR rate) in a small tail of systems, perhaps implying that the donor magnetic field strength at formation is a second parameter specifying CV evolution. We suggest that magnetic braking resumes below the gap with a wide range, being well below the GR rate in most CVs, but significantly above it in a small tail.Comment: 5 pages, 4 figures; accepted for publication in MNRA
    corecore