12 research outputs found

    Resolving Photon Numbers Using Ultra-High-Resolution Timing of a Single Low-Jitter Superconducting Nanowire Detector

    Full text link
    Photon-number-resolving (PNR) detectors are a key enabling technology in photonic quantum information processing. Here, we demonstrate the PNR capacity of conventional superconducting nanowire single-photon detectors by performing ultra-high-resolution time-tagging of the detector-generated electrical pulses. This method provides a viable approach for PNR with high detection efficiency and a high operational repetition rate. We present the implementation of such a PNR detector in the telecom C-band and its characterization by measuring the photon-number statistics of coherent light with tunable intensity. Additionally, we demonstrate the capabilities of the detection method by measuring photon-number correlations of non-classical states.Comment: 6 pages, 8 figure

    Strong amplitude-phase coupling in submonolayer quantum dots

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 109, 201102 (2016) and may be found at https://doi.org/10.1063/1.4967833.Submonolayer quantum dots promise to combine the beneficial features of zero- and two-dimensional carrier confinement. To explore their potential with respect to all-optical signal processing, we investigate the amplitude-phase coupling (α-parameter) in semiconductor optical amplifiers based on InAs/GaAs submonolayer quantum dots in ultrafast pump-probe experiments. Lateral coupling provides an efficient carrier reservoir and gives rise to a large α-parameter. Combined with a high modal gain and an ultrafast gain recovery, this makes the submonolayer quantum dots an attractive gain medium for nonlinear optical signal processing

    Sideband pump-probe technique resolves nonlinear modulation response of PbS/CdS quantum dots on a silicon nitride waveguide

    Get PDF
    For possible applications of colloidal nanocrystals in optoelectronics and nanophotonics, it is of high interest to study their response at low excitation intensity with high repetition rates, as switching energies in the pJ/bit to sub-pJ/bit range are targeted. We develop a sensitive pump-probe method to study the carrier dynamics in colloidal PbS/CdS quantum dots deposited on a silicon nitride waveguide after excitation by laser pulses with an average energy of few pJ/pulse. We combine an amplitude modulation of the pump pulse with phase-sensitive heterodyne detection. This approach permits to use co-linearly propagating co-polarized pulses. The method allows resolving transmission changes of the order of 10(-5) and phase changes of arcseconds. We find a modulation on a sub-nanosecond time scale caused by Auger processes and biexciton decay in the quantum dots. With ground state lifetimes exceeding 1 mu s, these processes become important for possible realizations of opto-electronic switching and modulation based on colloidal quantum dots emitting in the telecommunication wavelength regime

    Gain dynamics of quantum dot devices for dual-state operation

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 104, 261108 (2014) and may be found at https://doi.org/10.1063/1.4885383.Ground state gain dynamics of In(Ga)As-quantum dot excited state lasers are investigated via single-color ultrafast pump-probe spectroscopy below and above lasing threshold. Two-color pump-probe experiments are used to localize lasing and non-lasing quantum dots within the inhomogeneously broadened ground state. Single-color results yield similar gain recovery rates of the ground state for lasing and non-lasing quantum dots decreasing from 6 ps to 2 ps with increasing injection current. We find that ground state gain dynamics are influenced solely by the injection current and unaffected by laser operation of the excited state. This independence is promising for dual-state operation schemes in quantum dot based optoelectronic devices.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement

    Fast gain and phase recovery of semiconductor optical amplifiers based on submonolayer quantum dots

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 107, 201102 (2015) and may be found at https://doi.org/10.1063/1.4935792.Submonolayer quantum dots as active medium in opto-electronic devices promise to combine the high density of states of quantum wells with the fast recovery dynamics of self-assembled quantum dots. We investigate the gain and phase recovery dynamics of a semiconductor optical amplifier based on InAs submonolayer quantum dots in the regime of linear operation by one- and two-color heterodyne pump-probe spectroscopy. We find an as fast recovery dynamics as for quantum dot-in-a-well structures, reaching 2 ps at moderate injection currents. The effective quantum well embedding the submonolayer quantum dots acts as a fast and efficient carrier reservoir.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, BauelementeDFG, 87159868, GRK 1558: Kollektive Dynamik im Nichtgleichgewicht: in kondensierter Materie und biologischen Systeme

    Breitbandige ultraschnelle Spektroskopie an gemischdimensionalen InAs/GaAs-Systemen

    No full text
    This thesis deals with light matter interaction and electron dynamics in coupled systems of nanostructured III-V semiconductors, particularly with quantum dots embedded in quantum wells. Its focus is on the role of dimensionality and the characterization of quantum dot states with respect to their two- and many-level nature. The sample under investigation is a semiconductor optical amplifier under standard operating conditions, in particular at room temperature. An essential part of the work and a prerequisite of the experimental results is the re–development of a setup for heterodyne detection of laser pulses. Compared to the established pump–probe experiment, the duration of a single measurement was reduced by a factor of 100. This allowed the introduction of simultaneous multi–power measurements that are used to investigate the non–linear response of the system. More than that, several novel techniques have been developed: The Frequency Resolved Optical Short–pulse Characterization by Heterodyning (FROSCH) for pulse shape analysis, the sideband pump–probe technique for low signal measurements, and finally a method for two–dimensional coherent spectroscopy. All these techniques can be used on the same setup without significant realignment. A detailed description is given in part II. In a first set of experiments we were able to observe Rabi oscillations of the quantum dot exciton ground state at room temperature as a typical property of two–level systems. These observations on a femtosecond timescale were enabled by the FROSCH technique when the ground state oscillations caused a characteristic pulse shape modification. On the other hand, the many–level characteristics dominated a large set of pump–probe measurements presented in chapter 10. Under the assumption of a linear superposition of zero–dimensional quantum dot states on the one hand and two- or three-dimensional continuum states on the other hand, it was not possible to describe the electron dynamics. The introduction of “crossed excitons” into the model allowed for a consistent explanation of the gain dynamics. These crossed excitons are formed by Coulomb attraction of a zero–dimensional single carrier state and another one of higher dimensionality. The crossed excitons affect the optical transitions as well as the carrier diffusion in the quantum well. The apparent contradiction in these findings with respect to the two- and many-level characteristics is resolved in the final experimental part by two–dimensional coherent spectroscopy. This technique uses white laser pulses and merges all technical approaches developed in the previous parts. This allows the observation of the coherent coupling of states with large energy separation. The reliability of the technique is proven by the extraction of dephasing times that are in excellent agreement with literature values. In the two–dimensional spectra we find distinct signatures of crossed excitons that can be investigated in detail by this novel technique.Diese Dissertation setzt sich mit der Licht–Materie–Wechselwirkung und der Elektronendynamik in gekoppelten Systemen von nanostrukturierten III-V–Halbleitern am Beispiel in Quantenfilme eingebetteter Quantenpunkte auseinander. Dabei wird insbesondere der Einfluss der DimensionalitĂ€t untersucht und die Frage nach der Charakterisierung von QuantenpunktzustĂ€nden hinsichtlich ihrer Eigenschaften als Zwei- bzw. Viel-Niveau-Systemen behandelt. Als Probe dient ein optischer Halbleiter-VerstĂ€rker, der unter typischen Anwendungsbedingungen untersucht wird, also insbesondere bei Raumtemperatur. Wesentlicher Bestandteil der Arbeit und Grundlage der experimentellen Ergebnisse war die Weiterentwicklung eines Aufbaus zur heterodynen Detektion von Laserpulsen. Dabei konnte fĂŒr die etablierte Pump-Probe-Technik die nötige Messzeit um einen Faktor 100 verkĂŒrzt werden. Dies ermöglichte auch die EinfĂŒhrung simultaner Messungen mit abgestuften AnregungsintensitĂ€ten zur Untersuchung nichtlinearer Antworten des Systems. DarĂŒber hinaus wurden mehrere neue Techniken entwickelt: Die “Frequency Resolved Optical Short-pulse Characterization by Heterodyning” (FROSCH) zur Analyse von Pulsformen, die Seitenband-Pump-Probe zur Messung sehr kleiner Signale und zuletzt ein Aufbau zur zweidimensionalen kohĂ€renten Spektroskopie. All diese Techniken sind ohne nennenswerte Umbauarbeiten am selben Versuchsstand nutzbar und im Teil II der Dissertation detailiert beschrieben. ZunĂ€chst konnten mit der FROSCH–Technik Rabi-Oszillationen des Exzitonen-Grundzustandes als typische Eigenschaft eines Zwei-Niveau-Systems in Quantenpunkten bei Raumtemperatur nachgewiesen werden. Die Beobachtung dieses Effekts auf der Zeitskala von Femtosekunden wurde durch die FROSCH-Technik ermöglicht. Das Oszillieren des Grundzustandes fĂŒhrt dabei zu einer charakteristischen Pulsverformung. Im Gegensatz dazu zeigte sich die Viel-Niveau-Charakteristik in einer Vielzahl von Pump-Probe- Messungen, die in Abschnitt 10 prĂ€sentiert werden. Die erhobenen Daten konnten dabei nicht im Rahmen einer linearen Überlagerung von nulldimensionalen ZustĂ€nden einerseits und zwei- bzw. dreidimensionalen ZustĂ€nden andererseits erklĂ€rt werden. Durch die EinfĂŒhrung gekreuzter Exzitonen (“crossed excitons”), die einen durch Coulomb-Weschselwirkung gebundenen Zustand je eines null- und eines höherdimensionalen EinzelladungstrĂ€gerzustands darstellen, konnte eine konsistente ErklĂ€rung fĂŒr die beobachtete VerstĂ€rkungsdynamik geliefert werden. Dies gilt sowohl in Hinblick auf die Anregung optischer ÜbergĂ€nge als auch bezĂŒglich der LadungstrĂ€gerdiffusion im Quantenfilm. Die Vereinigung dieser widersprĂŒchlich anmutenden Ergebnisse hinsichtlich Zwei- oder Viel-Niveau-Charakteristik erfolgt im letzten experimentellen Teil mit Hilfe der zweidimensionalen kohĂ€renten Spektroskopie. Diese Technik vereint alle zuvor entwickelten technischen AnsĂ€tze und ermöglicht durch den Einsatz von weißen Laserpulsen die Identifikation kohĂ€renter Kopplungen von ÜbergĂ€ngen mit großem energetischen Abstand. Die ZuverlĂ€ssigkeit der Technik wird durch die Extraktion von KohĂ€renzzeiten der Quantenpunkte und den Abgleich mit Literaturdaten belegt. DarĂŒber hinaus weisen die zweidimensionalen Spektren deutliche Signaturen gekreuzter Exzitonen auf, womit erstmalig eine direkte Beobachtung dieser optischen ÜbergĂ€nge möglich wird

    Fast time-domain diffuse correlation spectroscopy with superconducting nanowire single-photon detector: system validation and in vivo results

    Get PDF
    Abstract Time-domain diffuse correlation spectroscopy (TD-DCS) has been introduced as an advancement of the “classical” continuous wave DCS (CW-DCS) allowing one to not only to measure depth-resolved blood flow index (BFI) but also to extract optical properties of the measured medium without using any additional diffuse optics technique. However, this method is a photon-starved technique, specially when considering only the late photons that are of primary interest which has limited its in vivo application. In this work, we present a TD-DCS system based on a superconducting nanowire single-photon detector (SNSPD) with a high quantum efficiency, a narrow timing response, and a negligibly low dark count noise. We compared it to the typically used single-photon avalanche diode (SPAD) detector. In addition, this system allowed us to conduct fast in vivo measurements and obtain gated pulsatile BFI on the adult human forehead
    corecore