30 research outputs found

    Architecture of the yeast elongator complex

    Get PDF
    The highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1-6) that are all equally important for its tRNA modification activity. However, its overall architecture and the detailed reaction mechanism remain elusive. Here, we report the structures of the fully assembled yeast Elongator and the Elp123 sub-complex solved by an integrative structure determination approach showing that two copies of the Elp1, Elp2, and Elp3 subunits form a two-lobed scaffold, which binds Elp456 asymmetrically. Our topological models are consistent with previous studies on individual subunits and further validated by complementary biochemical analyses. Our study provides a structural framework on how the tRNA modification activity is carried out by Elongator

    Architecture of the yeast elongator complex

    Get PDF
    The highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1-6) that are all equally important for its tRNA modification activity. However, its overall architecture and the detailed reaction mechanism remain elusive. Here, we report the structures of the fully assembled yeast Elongator and the Elp123 sub-complex solved by an integrative structure determination approach showing that two copies of the Elp1, Elp2, and Elp3 subunits form a two-lobed scaffold, which binds Elp456 asymmetrically. Our topological models are consistent with previous studies on individual subunits and further validated by complementary biochemical analyses. Our study provides a structural framework on how the tRNA modification activity is carried out by Elongator

    Structures and activities of the Elongator complex and Its cofactors

    No full text
    Elongator is a highly conserved eukaryotic protein complex consisting of two sets of six Elp proteins, while homologues of its catalytic subunit Elp3 are found in all the kingdoms of life. Although it was originally described as a transcription elongation factor, cumulating evidence suggests that its primary function is catalyzing tRNA modifications. In humans, defects in Elongator subunits are associated with neurological disorders and cancer. Although further studies are still required, a clearer picture of the molecular mechanism of action of Elongator and its cofactors has started to emerge within recent years that have witnessed significant development in the field. In this review we summarize recent Elongator-related findings provided largely by crystal structures of several subunits of the complex, the electron microscopy structure of the entire yeast holoenzyme, as well as the structure of the Elongator cofactor complex Kti11/Kti13

    Structure of the Elongator cofactor complex Kti11/Kti13 provides insight into the role of Kti13 in Elongator-dependent tRNA modification

    No full text
    Modification of wobble uridines of many eukaryotic tRNAs requires the Elongator complex, a highly conserved six-subunit eukaryotic protein assembly, as well as the Killer toxin-insensitive (Kti) proteins 11-14. Kti11 was additionally shown to be implicated in the biosynthesis of diphthamide, a post-translationally modified histidine of translation elongation factor 2. Recent data indicate that iron-bearing Kti11 functions as an electron donor to the [4Fe-4S] cluster of radical S-Adenosylmethionine enzymes, triggering the subsequent radical reaction. We show here that recombinant yeast Kti11 forms a stable 1 : 1 complex with Kti13. To obtain insights into the function of this heterodimer, the Kti11/Kti13 complex was purified to homogeneity, crystallized, and its structure determined at 1.45 A resolution. The importance of several residues mediating complex formation was confirmed by mutagenesis. Kti13 adopts a fold characteristic of RCC1-like proteins. The seven-bladed beta-propeller consists of a unique mixture of four- and three-stranded blades. In the complex, Kti13 orients Kti11 and restricts access to its electron-carrying iron atom, constraining the electron transfer capacity of Kti11. Based on these findings, we propose a role for Kti13, and discuss the possible functional implications of complex formation. DATABASE: Structural data have been submitted to the Protein Data Bank under accession number 4X33

    Use of folding modulators to improve heterologous protein production in escherichia coli

    No full text
    Despite the fundamental importance of E. coli in the manufacture of a wide range of biotechnological and biomedical products, extensive process and/or target optimisation is routinely required in order to achieve functional yields in excess of low mg/l levels. Molecular chaperones and folding catalysts appear to present a panacea for problems of heterologous protein folding in the organism, due largely to their broad substrate range compared with, e. g., protein-specific mutagenesis approaches. Painstaking investigation of chaperone overproduction has, however, met with mixed - and largely unpredictable - results to date. The past 5 years have nevertheless seen an explosion in interest in exploiting the native folding modulators of E. coli, and particularly cocktails thereof, driven largely by the availability of plasmid systems that facilitate simultaneous, non-rational screening of multiple chaperones during recombinant protein expression. As interest in using E. coli to produce recombinant membrane proteins and even glycoproteins grows, approaches to reduce aggregation, delay host cell lysis and optimise expression of difficult-to-express recombinant proteins will become even more critical over the coming years. In this review, we critically evaluate the performance of molecular chaperones and folding catalysts native to E. coli in improving functional production of heterologous proteins in the bacterium and we discuss how they might best be exploited to provide increased amounts of correctly-folded, active protein for biochemical and biophysical studies

    Use of folding modulators to improve heterologous protein production in escherichia coli

    No full text
    Despite the fundamental importance of E. coli in the manufacture of a wide range of biotechnological and biomedical products, extensive process and/or target optimisation is routinely required in order to achieve functional yields in excess of low mg/l levels. Molecular chaperones and folding catalysts appear to present a panacea for problems of heterologous protein folding in the organism, due largely to their broad substrate range compared with, e. g., protein-specific mutagenesis approaches. Painstaking investigation of chaperone overproduction has, however, met with mixed - and largely unpredictable - results to date. The past 5 years have nevertheless seen an explosion in interest in exploiting the native folding modulators of E. coli, and particularly cocktails thereof, driven largely by the availability of plasmid systems that facilitate simultaneous, non-rational screening of multiple chaperones during recombinant protein expression. As interest in using E. coli to produce recombinant membrane proteins and even glycoproteins grows, approaches to reduce aggregation, delay host cell lysis and optimise expression of difficult-to-express recombinant proteins will become even more critical over the coming years. In this review, we critically evaluate the performance of molecular chaperones and folding catalysts native to E. coli in improving functional production of heterologous proteins in the bacterium and we discuss how they might best be exploited to provide increased amounts of correctly-folded, active protein for biochemical and biophysical studies

    Use of folding modulators to improve heterologous protein production in Escherichia coli

    Get PDF
    Despite the fundamental importance of E. coli in the manufacture of a wide range of biotechnological and biomedical products, extensive process and/or target optimisation is routinely required in order to achieve functional yields in excess of low mg/l levels. Molecular chaperones and folding catalysts appear to present a panacea for problems of heterologous protein folding in the organism, due largely to their broad substrate range compared with, e.g., protein-specific mutagenesis approaches. Painstaking investigation of chaperone overproduction has, however, met with mixed – and largely unpredictable – results to date. The past 5 years have nevertheless seen an explosion in interest in exploiting the native folding modulators of E. coli, and particularly cocktails thereof, driven largely by the availability of plasmid systems that facilitate simultaneous, non-rational screening of multiple chaperones during recombinant protein expression. As interest in using E. coli to produce recombinant membrane proteins and even glycoproteins grows, approaches to reduce aggregation, delay host cell lysis and optimise expression of difficult-toexpress recombinant proteins will become even more critical over the coming years. In this review, we critically evaluate the performance of molecular chaperones and folding catalysts native to E. coli in improving functional production of heterologous proteins in the bacterium and we discuss how they might best be exploited to provide increased amounts of correctly-folded, active protein for biochemical and biophysical studies
    corecore