54 research outputs found

    Level Set Jet Schemes for Stiff Advection Equations: The SemiJet Method

    Get PDF
    Many interfacial phenomena in physical and biological systems are dominated by high order geometric quantities such as curvature. Here a semi-implicit method is combined with a level set jet scheme to handle stiff nonlinear advection problems. The new method offers an improvement over the semi-implicit gradient augmented level set method previously introduced by requiring only one smoothing step when updating the level set jet function while still preserving the underlying methods higher accuracy. Sample results demonstrate that accuracy is not sacrificed while strict time step restrictions can be avoided

    The Semi Implicit Gradient Augmented Level Set Method

    Full text link
    Here a semi-implicit formulation of the gradient augmented level set method is presented. By tracking both the level set and it's gradient accurate subgrid information is provided,leading to highly accurate descriptions of a moving interface. The result is a hybrid Lagrangian-Eulerian method that may be easily applied in two or three dimensions. The new approach allows for the investigation of interfaces evolving by mean curvature and by the intrinsic Laplacian of the curvature. In this work the algorithm, convergence and accuracy results are presented. Several numerical experiments in both two and three dimensions demonstrate the stability of the scheme.Comment: 19 Pages, 14 Figure

    Group IV Materials for Low Cost and High Performance Bolometers

    Get PDF

    Through-membrane electron-beam lithography for ultrathin membrane applications

    Full text link
    We present a technique to fabricate ultrathin (down to 20 nm) uniform electron transparent windows at dedicated locations in a SiN membrane for in situ transmission electron microscopy experiments. An electron-beam (e-beam) resist is spray-coated on the backside of the membrane in a KOH- etched cavity in silicon which is patterned using through-membrane electron-beam lithography. This is a controlled way to make transparent windows in membranes, whilst the topside of the membrane remains undamaged and retains its flatness. Our approach was optimized for MEMS-based heating chips but can be applied to any chip design. We show two different applications of this technique for (1) fabrication of a nanogap electrode by means of electromigration in thin free-standing metal films and (2) making low-noise graphene nanopore devices

    Comparison of knowledge, attitude and practice of Urban and rural households toward iron deficiency anemia in three provinces of Iran

    Get PDF
    Background: Lack of nutritional knowledge is one of the most important reasons of nutritional problems and consequently improper practice, which can lead to several complications. This study has been designed in order to compare knowledge, attitude and practices of the urban and rural households regarding iron deficiency anemia (IDA) in Boushehr, Golestan and Sistan & Balouchestan provinces in 2004. Methods: The sampling method at household's level in each province was the single-stage cluster sampling with equal size clusters. The necessary data were gathered with a structured questionnaire and via the interviews between the questioners and the eligible people in each household. Comparison of frequency of variables between urban and rural areas were tested by chi square test. Results: A total of 2306 households were selected as overall sample size. In urban areas, people recognized iron food sources better than rural areas. Knowledge level of respondents about vulnerable group for IDA and the favorite attitude of households toward IDA were better in urban areas of Sistan & Blouchestan and Golestan provinces. In Sistan & Balouchestan and Golestan, rural households who drank tea immediately before or after meal was more than urban ones. The majority of pregnant and lactating mothers (except for rural areas of Bushehr) did not take iron supplement regularly. Less than 60 percent of children used iron drop regularly. Conclusion: Knowledge, attitude, and practice levels of households toward IDA were not acceptable. One of the best ways of improving nutritional practice is nutritional education with focus on applying available food resources

    An Immersed Interface Method for Discrete Surfaces

    Full text link
    Fluid-structure systems occur in a range of scientific and engineering applications. The immersed boundary(IB) method is a widely recognized and effective modeling paradigm for simulating fluid-structure interaction(FSI) in such systems, but a difficulty of the IB formulation is that the pressure and viscous stress are generally discontinuous at the interface. The conventional IB method regularizes these discontinuities, which typically yields low-order accuracy at these interfaces. The immersed interface method(IIM) is an IB-like approach to FSI that sharply imposes stress jump conditions, enabling higher-order accuracy, but prior applications of the IIM have been largely restricted to methods that rely on smooth representations of the interface geometry. This paper introduces an IIM that uses only a C0 representation of the interface,such as those provided by standard nodal Lagrangian FE methods. Verification examples for models with prescribed motion demonstrate that the method sharply resolves stress discontinuities along the IB while avoiding the need for analytic information of the interface geometry. We demonstrate that only the lowest-order jump conditions for the pressure and velocity gradient are required to realize global 2nd-order accuracy. Specifically,we show 2nd-order global convergence rate along with nearly 2nd-order local convergence in the Eulerian velocity, and between 1st-and 2nd-order global convergence rates along with 1st-order local convergence for the Eulerian pressure. We also show 2nd-order local convergence in the interfacial displacement and velocity along with 1st-order local convergence in the fluid traction. As a demonstration of the method's ability to tackle complex geometries,this approach is also used to simulate flow in an anatomical model of the inferior vena cava.Comment: - Added a non-axisymmetric example (flow within eccentric rotating cylinder in Sec. 4.3) - Added a more in-depth analysis and comparison with a body-fitted approach for the application in Sec. 4.
    • …
    corecore