1,171 research outputs found

    On Black-Brane Instability In an Arbitrary Dimension

    Full text link
    The black-hole black-string system is known to exhibit critical dimensions and therefore it is interesting to vary the spacetime dimension DD, treating it as a parameter of the system. We derive the large DD asymptotics of the critical, i.e. marginally stable, string following an earlier numerical analysis. For a background with an arbitrary compactification manifold we give an expression for the critical mass of a corresponding black brane. This expression is completely explicit for Tn{\bf T}^n, the nn dimensional torus of an arbitrary shape. An indication is given that by employing a higher dimensional torus, rather than a single compact dimension, the total critical dimension above which the nature of the black-brane black-hole phase transition changes from sudden to smooth could be as low as D11D\leq 11.Comment: 1+14 pages, 2 eps figures. Replaced with the published versio

    Classical Effective Field Theory for Weak Ultra Relativistic Scattering

    Full text link
    Inspired by the problem of Planckian scattering we describe a classical effective field theory for weak ultra relativistic scattering in which field propagation is instantaneous and transverse and the particles' equations of motion localize to the instant of passing. An analogy with the non-relativistic (post-Newtonian) approximation is stressed. The small parameter is identified and power counting rules are established. The theory is applied to reproduce the leading scattering angle for either a scalar interaction field or electro-magnetic or gravitational; to compute some subleading corrections, including the interaction duration; and to allow for non-zero masses. For the gravitational case we present an appropriate decomposition of the gravitational field onto the transverse plane together with its whole non-linear action. On the way we touch upon the relation with the eikonal approximation, some evidence for censorship of quantum gravity, and an algebraic ring structure on 2d Minkowski spacetime.Comment: 29 pages, 2 figures. v4: Duration of interaction is determined in Sec 4 and detailed in App C. Version accepted for publication in JHE

    Non-Relativistic Gravitation: From Newton to Einstein and Back

    Full text link
    We present an improvement to the Classical Effective Theory approach to the non-relativistic or Post-Newtonian approximation of General Relativity. The "potential metric field" is decomposed through a temporal Kaluza-Klein ansatz into three NRG-fields: a scalar identified with the Newtonian potential, a 3-vector corresponding to the gravito-magnetic vector potential and a 3-tensor. The derivation of the Einstein-Infeld-Hoffmann Lagrangian simplifies such that each term corresponds to a single Feynman diagram providing a clear physical interpretation. Spin interactions are dominated by the exchange of the gravito-magnetic field. Leading correction diagrams corresponding to the 3PN correction to the spin-spin interaction and the 2.5PN correction to the spin-orbit interaction are presented.Comment: 10 pages, 3 figures. v2: published version. v3: Added a computation of Einstein-Infeld-Hoffmann in higher dimensions within our improved ClEFT which partially confirms and partially corrects a previous computation. See notes added at end of introductio

    Rotating nonuniform black string solutions

    Get PDF
    We explore via linearized perturbation theory the Gregory-Laflamme instability of rotating black strings with equal magnitude angular momenta. Our results indicate that the Gregory-Laflamme instability persists up to extremality for all even dimensions between six and fourteen. We construct rotating nonuniform black strings with two equal magnitude angular momenta in six dimensions. We see a first indication for the occurrence of a topology changing transition, associated with such rotating nonuniform black strings. Charged nonuniform black string configurations in heterotic string theory are also constructed by employing a solution generation technique.Comment: 36 pages, 10 figures, final versio

    Stable non-uniform black strings below the critical dimension

    Full text link
    The higher-dimensional vacuum Einstein equation admits translationally non-uniform black string solutions. It has been argued that infinitesimally non-uniform black strings should be unstable in 13 or fewer dimensions and otherwise stable. We construct numerically non-uniform black string solutions in 11, 12, 13, 14 and 15 dimensions. Their stability is investigated using local Penrose inequalities. Weakly non-uniform solutions behave as expected. However, in 12 and 13 dimensions, strongly non-uniform solutions appear to be stable and can have greater horizon area than a uniform string of the same mass. In 14 and 15 dimensions all non-uniform black strings appear to be stable.Comment: 26 pages, 11 figures. V2: reference added, matches published versio

    Holographic repulsion and confinement in gauge theory

    Full text link
    We show that for asymptotically anti-deSitter backgrounds with negative energy, such as the AdS soliton and regulated negative mass AdS-Schwarzshild metrics, the Wilson loop expectation value in the AdS/CFT conjecture exhibits a Coulomb to confinement transition. We also show that the quark-antiquark (qqˉq \bar q) potential can be interpreted as affine time along null geodesics on the minimal string world sheet,and that its intrinsic curvature provides a signature of transition to confinement phase. The result demonstrates a UV/IR relation in that the boundary separation of the qqˉq \bar{q} pair exhibits an inverse relationship with the radial descent of the world sheet into the bulk. Our results suggest a generic (holographic) relationship between confinement in gauge theory and repulsive gravity, which in turn is connected with singularity avoidance in quantum gravity.Comment: 8 pages, 4 figure

    Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics

    Get PDF
    We show that under variation of moduli fields ϕ\phi the first law of black hole thermodynamics becomes dM=κdA8π+ΩdJ+ψdq+χdpΣdϕdM = {\kappa dA\over 8\pi} + \Omega dJ + \psi dq + \chi dp - \Sigma d\phi, where Σ\Sigma are the scalar charges. We also show that the ADM mass is extremized at fixed AA, JJ, (p,q)(p,q) when the moduli fields take the fixed value ϕfix(p,q)\phi_{\rm fix}(p,q) which depend only on electric and magnetic charges. It follows that the least mass of any black hole with fixed conserved electric and magnetic charges is given by the mass of the double-extreme black hole with these charges. Our work allows us to interpret the previously established result that for all extreme black holes the moduli fields at the horizon take a value ϕ=ϕfix(p,q)\phi= \phi_{\rm fix}(p,q) depending only on the electric and magnetic conserved charges: ϕfix(p,q) \phi_{\rm fix}(p,q) is such that the scalar charges Σ(ϕfix,(p,q))=0\Sigma ( \phi_{\rm fix}, (p,q))=0.Comment: 3 pages, no figures, more detailed versio

    New nonuniform black string solutions

    Full text link
    We present nonuniform vacuum black strings in five and six spacetime dimensions. The conserved charges and the action of these solutions are computed by employing a quasilocal formalism. We find qualitative agreement of the physical properties of nonuniform black strings in five and six dimensions. Our results offer further evidence that the black hole and the black string branches merge at a topology changing transition. We generate black string solutions of the Einstein-Maxwell-dilaton theory by using a Harrison transformation. We argue that the basic features of these solutions can be derived from those of the vacuum black string configurations.Comment: 30 pages, 12 figures; v2: more details on numerical method, references added; v3: references added, minor revisions, version accepted by journa
    corecore