1,171 research outputs found
On Black-Brane Instability In an Arbitrary Dimension
The black-hole black-string system is known to exhibit critical dimensions
and therefore it is interesting to vary the spacetime dimension , treating
it as a parameter of the system. We derive the large asymptotics of the
critical, i.e. marginally stable, string following an earlier numerical
analysis. For a background with an arbitrary compactification manifold we give
an expression for the critical mass of a corresponding black brane. This
expression is completely explicit for , the dimensional torus of
an arbitrary shape. An indication is given that by employing a higher
dimensional torus, rather than a single compact dimension, the total critical
dimension above which the nature of the black-brane black-hole phase transition
changes from sudden to smooth could be as low as .Comment: 1+14 pages, 2 eps figures. Replaced with the published versio
Classical Effective Field Theory for Weak Ultra Relativistic Scattering
Inspired by the problem of Planckian scattering we describe a classical
effective field theory for weak ultra relativistic scattering in which field
propagation is instantaneous and transverse and the particles' equations of
motion localize to the instant of passing. An analogy with the non-relativistic
(post-Newtonian) approximation is stressed. The small parameter is identified
and power counting rules are established. The theory is applied to reproduce
the leading scattering angle for either a scalar interaction field or
electro-magnetic or gravitational; to compute some subleading corrections,
including the interaction duration; and to allow for non-zero masses. For the
gravitational case we present an appropriate decomposition of the gravitational
field onto the transverse plane together with its whole non-linear action. On
the way we touch upon the relation with the eikonal approximation, some
evidence for censorship of quantum gravity, and an algebraic ring structure on
2d Minkowski spacetime.Comment: 29 pages, 2 figures. v4: Duration of interaction is determined in Sec
4 and detailed in App C. Version accepted for publication in JHE
Non-Relativistic Gravitation: From Newton to Einstein and Back
We present an improvement to the Classical Effective Theory approach to the
non-relativistic or Post-Newtonian approximation of General Relativity. The
"potential metric field" is decomposed through a temporal Kaluza-Klein ansatz
into three NRG-fields: a scalar identified with the Newtonian potential, a
3-vector corresponding to the gravito-magnetic vector potential and a 3-tensor.
The derivation of the Einstein-Infeld-Hoffmann Lagrangian simplifies such that
each term corresponds to a single Feynman diagram providing a clear physical
interpretation. Spin interactions are dominated by the exchange of the
gravito-magnetic field. Leading correction diagrams corresponding to the 3PN
correction to the spin-spin interaction and the 2.5PN correction to the
spin-orbit interaction are presented.Comment: 10 pages, 3 figures. v2: published version. v3: Added a computation
of Einstein-Infeld-Hoffmann in higher dimensions within our improved ClEFT
which partially confirms and partially corrects a previous computation. See
notes added at end of introductio
Rotating nonuniform black string solutions
We explore via linearized perturbation theory the Gregory-Laflamme
instability of rotating black strings with equal magnitude angular momenta. Our
results indicate that the Gregory-Laflamme instability persists up to
extremality for all even dimensions between six and fourteen. We construct
rotating nonuniform black strings with two equal magnitude angular momenta in
six dimensions. We see a first indication for the occurrence of a topology
changing transition, associated with such rotating nonuniform black strings.
Charged nonuniform black string configurations in heterotic string theory are
also constructed by employing a solution generation technique.Comment: 36 pages, 10 figures, final versio
Stable non-uniform black strings below the critical dimension
The higher-dimensional vacuum Einstein equation admits translationally
non-uniform black string solutions. It has been argued that infinitesimally
non-uniform black strings should be unstable in 13 or fewer dimensions and
otherwise stable. We construct numerically non-uniform black string solutions
in 11, 12, 13, 14 and 15 dimensions. Their stability is investigated using
local Penrose inequalities. Weakly non-uniform solutions behave as expected.
However, in 12 and 13 dimensions, strongly non-uniform solutions appear to be
stable and can have greater horizon area than a uniform string of the same
mass. In 14 and 15 dimensions all non-uniform black strings appear to be
stable.Comment: 26 pages, 11 figures. V2: reference added, matches published versio
Holographic repulsion and confinement in gauge theory
We show that for asymptotically anti-deSitter backgrounds with negative
energy, such as the AdS soliton and regulated negative mass AdS-Schwarzshild
metrics, the Wilson loop expectation value in the AdS/CFT conjecture exhibits a
Coulomb to confinement transition. We also show that the quark-antiquark () potential can be interpreted as affine time along null geodesics on
the minimal string world sheet,and that its intrinsic curvature provides a
signature of transition to confinement phase. The result demonstrates a UV/IR
relation in that the boundary separation of the pair exhibits an
inverse relationship with the radial descent of the world sheet into the bulk.
Our results suggest a generic (holographic) relationship between confinement in
gauge theory and repulsive gravity, which in turn is connected with singularity
avoidance in quantum gravity.Comment: 8 pages, 4 figure
Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics
We show that under variation of moduli fields the first law of black
hole thermodynamics becomes , where are the scalar charges. We also show
that the ADM mass is extremized at fixed , , when the moduli
fields take the fixed value which depend only on electric
and magnetic charges. It follows that the least mass of any black hole with
fixed conserved electric and magnetic charges is given by the mass of the
double-extreme black hole with these charges. Our work allows us to interpret
the previously established result that for all extreme black holes the moduli
fields at the horizon take a value depending only
on the electric and magnetic conserved charges: is such
that the scalar charges .Comment: 3 pages, no figures, more detailed versio
New nonuniform black string solutions
We present nonuniform vacuum black strings in five and six spacetime
dimensions. The conserved charges and the action of these solutions are
computed by employing a quasilocal formalism. We find qualitative agreement of
the physical properties of nonuniform black strings in five and six dimensions.
Our results offer further evidence that the black hole and the black string
branches merge at a topology changing transition. We generate black string
solutions of the Einstein-Maxwell-dilaton theory by using a Harrison
transformation. We argue that the basic features of these solutions can be
derived from those of the vacuum black string configurations.Comment: 30 pages, 12 figures; v2: more details on numerical method,
references added; v3: references added, minor revisions, version accepted by
journa
- …
