29 research outputs found

    Bernoulli potential in type-I and weak type-II superconductors: I. Surface charge

    Full text link
    The electrostatic potential close to the surface of superconductors in the Meissner state is discussed. We show that beside the Bernoulli potential, the quasiparticle screening, and the thermodynamic contribution due to Rickayzen, there is a non-local contribution which is large for both type-I and weak type-II superconductors.Comment: 7 pages, 4 figure

    Surface energy and magneto-capacitance of superconductors under electric field bias

    Full text link
    A superconducting layer exposed to a perpendicular electric field and a parallel magnetic field is considered within the Ginzburg-Landau (GL) approach. The GL equation is solved near the surface and the surface energy is calculated. The nucleation critical field of superconducting state at the surface depends on the magnetic and electric fields. Special consideration is paid to the induced magnetic-field effect cause d by diamagnetic surface currents. The latter effect is strongly dependent on the thickness of the sample. The effective inverse capacitance determines the effective penetration depth. It is found that the capacitance exhibits a jump at the surface critical field. An experiment is suggested for determining the change in the effective capacitance of the layer

    Ginzburg-Landau theory of superconducting surfaces under electric fields

    Full text link
    A boundary condition for the Ginzburg-Landau wave function at surfaces biased by a strong electric field is derived within the de Gennes approach. This condition provides a simple theory of the field effect on the critical temperature of superconducting layers.Comment: 4 pages, 1 figur

    Shifts of the nuclear resonance in the vortex lattice in YBa2_2Cu3_3O7_7

    Full text link
    The NMR and NQR spectra of 63^{63}Cu in the CuO2_2 plane of YBa2_2Cu3_3O7_7 in the superconducting state are discussed in terms of the phenomenological theory of Ginzburg-Landau type extended to lower temperatures. We show that the observed spectra, Kumagai {\em et al.}, PRB {\bf 63}, 144502 (2001), can be explained by a standard theory of the Bernoulli potential with the charge transfer between CuO2_2 planes and CuO chains assumed.Comment: 11 pages 7 figure

    Electrostatic potential in a superconductor

    Full text link
    The electrostatic potential in a superconductor is studied. To this end Bardeen's extension of the Ginzburg-Landau theory to low temperatures is used to derive three Ginzburg-Landau equations - the Maxwell equation for the vector potential, the Schroedinger equation for the wave function and the Poisson equation for the electrostatic potential. The electrostatic and the thermodynamic potential compensate each other to a great extent resulting into an effective potential acting on the superconducting condensate. For the Abrikosov vortex lattice in Niobium, numerical solutions are presented and the different contributions to the electrostatic potential and the related charge distribution are discussed.Comment: 19 pages, 11 figure

    The concept of correlated density and its application

    Full text link
    The correlated density appears in many physical systems ranging from dense interacting gases up to Fermi liquids which develop a coherent state at low temperatures, the superconductivity. One consequence of the correlated density is the Bernoulli potential in superconductors which compensates forces from dielectric currents. This Bernoulli potential allows to access material parameters. Though within the surface potential these contributions are largely canceled, the bulk measurements with NMR can access this potential. Recent experiments are explained and new ones suggested. The underlying quantum statistical theory in nonequilibrium is the nonlocal kinetic theory developed earlier.Comment: 14 pages, CMT30 proceeding

    Bernoulli potential in type-I and weak type-II supercoductors: II. Surface dipole

    Full text link
    The Budd-Vannimenus theorem is modified to apply to superconductors in the Meissner state. The obtained identity links the surface value of the electrostatic potential to the density of free energy at the surface which allows one to evaluate the electrostatic potential observed via the capacitive pickup without the explicit solution of the charge profile.Comment: 7 pages, 1 figur

    Charge Induced Vortex Lattice Instability

    Full text link
    It has been predicted that superconducting vortices should be electrically charged and that this effect is particularly enhanced for, high temperature superconductors.\cite{kho95,bla96} Hall effect\cite{hag91} and nuclear magnetic resonance (NMR) experiments\cite{kum01} suggest the existence of vortex charging, but the effects are small and the interpretation controversial. Here we show that the Abrikosov vortex lattice, characteristic of the mixed state of superconductors, will become unstable at sufficiently high magnetic field if there is charge trapped on the vortex core. Our NMR measurements of the magnetic fields generated by vortices in Bi2_{2}Sr2_{2}CaCu2_{2}O8+y_{8+y} single crystals\cite{che07} provide evidence for an electrostatically driven vortex lattice reconstruction with the magnitude of charge on each vortex pancake of 2\mathbf{\sim 2}x103e\mathbf{10^{-3} e}, depending on doping, in line with theoretical estimates.\cite{kho95,kna05}Comment: to appear in Nature Physics; 6 pages, 7 figure

    Contrasting behavior of covalent and molecular carbon allotropes exposed to extreme ultraviolet and soft x-ray free-electron laser radiation

    Full text link
    All carbon materials, e.g., amorphous carbon (a-C) coatings and C60 fullerene thin films, play an important role in short-wavelength free-electron laser (FEL) research motivated by FEL optics development and prospective nanotechnology applications. Responses of a-C and C60 layers to the extreme ultraviolet (SPring-8 Compact SASE Source in Japan) and soft x-ray (free-electron laser in Hamburg) free-electron laser radiation are investigated by Raman spectroscopy, differential interference contrast, and atomic force microscopy. A remarkable difference in the behavior of covalent (a-C) and molecular (C60) carbonaceous solids is demonstrated under these irradiation conditions. Low thresholds for ablation of a fullerene crystal (estimated to be around 0.15 eV/atom for C60 vs 0.9 eV/atom for a-C in terms of the absorbed dose) are caused by a low cohesive energy of fullerene crystals. An efficient mechanism of the removal of intact C60 molecules from the irradiated crystal due to Coulomb repulsion of fullerene-cage cation radicals formed by the ionizing radiation is revealed by a detailed modeling

    Electrostatic potential in a superconductor

    No full text
    The electrostatic potential in a superconductor is studied. To this end Bardeen's extension of the Ginzburg-Landau theory to low temperatures is used to derive three Ginzburg-Landau equations-the Maxwell equation for the vector potential, the Schrodinger equation for the wave function, and the Poisson equation for the electrostatic potential. The electrostatic and the thermodynamic potential compensate each other to a great extent resulting into an effective potential acting on the superconducting condensate. For the Abrikosov vortex lattice in niobium, numerical solutions are presented and the different contributions to the electrostatic potential and the related charge distribution are discussed
    corecore