3 research outputs found

    Recycling Waste Polyester via Modification with a Renewable Fatty Acid for Enhanced Processability

    No full text
    Polyethylene terephthalate (PET) waste often contains a large amount of thermally unstable contaminants and additives that negatively impacts processing. A reduced processing temperature is desired. In this work, we report using a renewably sourced tall oil fatty acid (TOFA) as a modifier for recycled PET. To that end, PET was compounded with TOFA at different concentrations and extruded at 240 °C. Phase transition behaviors characterized by thermal and dynamic mechanical analyses exhibit shifts in the melting and recrystallization temperatures of PET to lower temperatures and depression of glass transition temperature from 91 to 65 °C. Addition of TOFA also creates crystal-phase imperfection that slows recrystallization, an important processing parameter. Changes in the morphology of plasticized PET reduces and stabilizes the melt viscosity at 240 and 250 °C. Melt-spun, undrawn continuous filaments of diameter 36–46 μm made from these low-melting PET exhibit 29–38 MPa tensile strength, 2.7–2.8 GPa tensile modulus, and 20–36% elongation. These results suggest a potential path for reusing waste PET as high-performance polymeric fibers

    Sustainable Waste Tire Derived Carbon Material as a Potential Anode for Lithium-Ion Batteries

    No full text
    The rapidly growing automobile industry increases the accumulation of end-of-life tires each year throughout the world. Waste tires lead to increased environmental issues and lasting resource problems. Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of society. A patented sulfonation process followed by pyrolysis at 1100 °C in a nitrogen atmosphere was used to produce carbon material from these tires and utilized as an anode in lithium-ion batteries. The combustion of the volatiles released in waste tire pyrolysis produces lower fossil CO2 emissions per unit of energy (136.51 gCO2/kW·h) compared to other conventional fossil fuels such as coal or fuel–oil, usually used in power generation. The strategy used in this research may be applied to other rechargeable batteries, supercapacitors, catalysts, and other electrochemical devices. The Raman vibrational spectra observed on these carbons show a graphitic carbon with significant disorder structure. Further, structural studies reveal a unique disordered carbon nanostructure with a higher interlayer distance of 4.5 Å compared to 3.43 Å in the commercial graphite. The carbon material derived from tires was used as an anode in lithium-ion batteries exhibited a reversible capacity of 360 mAh/g at C/3. However, the reversible capacity increased to 432 mAh/g at C/10 when this carbon particle was coated with a thin layer of carbon. A novel strategy of prelithiation applied for improving the first cycle efficiency to 94% is also presented
    corecore