6 research outputs found

    Angular CMA: A modified Constant Modulus Algorithm providing steering angle updates

    Get PDF
    Conventional blind beamforming algorithms have no direct notion of the physical Direction of Arrival angle of an impinging signal. These blind adaptive algorithms operate by adjusting the complex steering vector in the case of changing signal conditions and directions. This paper presents Angular CMA, a blind beamforming method that calculates steering angle updates (instead of weight vector updates) to keep track of the desired signal. Angular CMA and its respective steering angle updates are particularly useful in the context of mixed-signal hierarchical arrays as means to find and distribute steering parameters. Simulations of Angular CMA show promising convergence behaviour, while having a lower complexity than alternative methods (e.g., MUSIC)

    DVB-S Signal Tracking Techniques for Mobile Phased Arrays

    Get PDF
    Abstract—A system that uses adaptive beamforming techniques for mobile Digital Video Broadcasting Satellite (DVB-S) reception is proposed in this paper. The purpose is to enable DVB-S reception in moving vehicles. Phased arrays are able to electronically track the desired signal during dynamic behaviour of the vehicle the array is mounted on.\ud The proposed system uses blind beamforming to adapt the array steering vector to changing signal (conditions and) directions. Movement of the vehicle, the phased array is mounted on, leads to modulus and phase deviations at the beamformer output. An extended version of the Constant Modulus Algorithm (CMA) algorithm is used to adapt the steering vector weights to compensate for those deviations.\ud For simulation of the proposed system a model of vehicle dynamics is used to generate realistic antenna data. Simulation of the proposed system based on this antenna data shows appropriate corrections for modulus and phase deviations

    Spurious-Free Dynamic Range of a Uniform Quantizer

    Get PDF
    Abstract—Quantization plays an important role in many systems where analog-to-digital conversion and/or digital-to-analog conversion take place. If the quantization error is correlated with the input signal, then the spectrum of the quantization error will contain spurious peaks. Although analytical formulas describing this effect exist, numerical evaluation can take much effort.\ud This brief provides approximations for the spurious-free dynamic range (SFDR) of a uniform quantizer with a single sinusoidal input, with and without additive Gaussian noise. It is shown that the SFDR increases by approximately 8 dB/bit, in case there is no noise. Generalizing this result to multitone inputs results in an additional 2 dB/bit per additional tone. Additive Gaussian noise decorrelates the sinusoid(s) and the quantization error, which results in a dramatic increase in SFDR
    corecore