81 research outputs found

    Angina Simultaneously Diagnosed with the Recurrence of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

    Get PDF
    Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) mainly affects young adults and can have a potential impact on social functioning. As this syndrome is associated with endothelial dysfunction, the heart can be damaged via ischemia due to endothelial damage. This might potentially lead to heart failure, which accounts for approximately 20% of deaths among patients with ME/CFS. While cardiac ischemia is thought be a pathophysiologically important manifestation of this syndrome, this is not yet reported. Herein, we present a case of a young female with newly diagnosed vasospastic or microvascular angina and concurrent exacerbation of ME/CFS severity. Her anginal symptoms, including exertional chest pain and transient chest discomfort, mimicked those of ME/CFS but were relieved after the administration of a calcium channel blocker. We emphasize the possibility of concurrent angina and exacerbation of ME/CFS and the importance of detecting cardiac ischemia to avoid unfavorable outcomes

    Curative two-stage resection for synchronous triple cancers of the esophagus, colon, and liver: Report of a case

    Get PDF
    AbstractIntroductionCases of synchronous triple cancers of the esophagus and other organs curatively resected are rare.Presentation of caseA 73-year-old man was admitted to our hospital with bloody feces. He was diagnosed with synchronous triple cancers of the esophagus, colon, and liver. We selected a two-stage operation to safely achieve curative resection for all three cancers. The first stage of the operation comprised a laparoscopy-assisted sigmoidectomy and partial liver resection via open surgery. The patient was discharged without complications. Thirty days later, he was readmitted and thoracoscopic esophagectomy was performed. Although pneumonia-induced pulmonary aspiration occurred as a postoperative complication, it was treated conservatively. The patient was discharged on postoperative day 24.DiscussionEsophagectomy is a highly invasive procedure; thus, simultaneous surgery for plural organs, including the esophagus, may induce life-threatening, severe complications. Two-stage surgery is useful in reducing surgical stress in high-risk patients. For synchronous multiple cancers, the planning of two-stage surgery should be considered for each cancer to maintain organ function and reduce the stress and difficulty of each stage.ConclusionWe successfully treated synchronous triple cancers, including esophageal cancer, by a two-stage operation

    SLAM family member 8 is expressed in and enhances the growth of anaplastic large cell lymphoma

    Get PDF
    Signaling lymphocytic activation molecule family member 8 (SLAMF8)B-lymphocyte activator macrophage expressed/CD353 is a member of the CD2 family. SLAMF8 suppresses macrophage function but enhances the growth of neoplastic mast cells via SHP-2. In this study, we found that some anaplastic large cell lymphoma (ALCL) samples were immunohistochemically positive for SLAMF8. However, we found no significant differences between SLAMF8-positive and SLAMF8-negative ALCL samples with respect to age, gender, site, or prognosis. We also identified SLAMF8 expression in ALCL cell lines, Karpas299, and SU-DHL-1. SLAMF8 knockdown decreased the activation of SHP-2 and the growth of these cell lines, and increased the apoptosis of these cell lines. In addition, we observed the interaction between SLAMF8 and SHP-2 in these cell lines using the DuoLink in situ kit. Taken together, these results suggest that SLAMF8 may enhance the growth of ALCL via SHP-2 interaction

    Involvement of promoter methylation in the regulation of Pregnane X receptor in colon cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pregnane X receptor (PXR) is a key transcription factor that regulates drug metabolizing enzymes such as cytochrome P450 (CYP) 3A4, and plays important roles in intestinal first-pass metabolism. Although there is a large inter-individual heterogeneity with intestinal CYP3A4 expression and activity, the mechanism driving these differences is not sufficiently explained by genetic variability of PXR or CYP3A4. We examined whether epigenetic mechanisms are involved in the regulation of PXR/CYP3A4 pathways in colon cancer cells.</p> <p>Methods</p> <p>mRNA levels of PXR, CYP3A4 and vitamin D receptor (VDR) were evaluated by quantitative real-time PCR on 6 colon cancer cell lines (Caco-2, HT29, HCT116, SW48, LS180, and LoVo). DNA methylation status was also examined by bisulfite sequencing of the 6 cell lines and 18 colorectal cancer tissue samples. DNA methylation was reversed by the treatment of these cell lines with 5-aza-2'-deoxycytidine (5-aza-dC).</p> <p>Results</p> <p>The 6 colon cancer cell lines were classified into two groups (high or low expression cells) based on the basal level of PXR/CYP3A4 mRNA. DNA methylation of the CpG-rich sequence of the <it>PXR </it>promoter was more densely detected in the low expression cells (Caco-2, HT29, HCT116, and SW48) than in the high expression cells (LS180 and LoVo). This methylation was reversed by treatment with 5-aza-dC, in association with re-expression of PXR and CYP3A4 mRNA, but not VDR mRNA. Therefore, PXR transcription was silenced by promoter methylation in the low expression cells, which most likely led to downregulation of CYP3A4 transactivation. Moreover, a lower level of <it>PXR </it>promoter methylation was observed in colorectal cancer tissues compared with adjacent normal mucosa, suggesting upregulation of the PXR/CYP3A4 mRNAs during carcinogenesis.</p> <p>Conclusions</p> <p><it>PXR </it>promoter methylation is involved in the regulation of intestinal PXR and CYP3A4 mRNA expression and might be associated with the inter-individual variability of the drug responses of colon cancer cells.</p

    A CASE OF "REDUCTION-EN-MASSE" OF AN INGUINAL HERNIA

    No full text

    Transmission Performance of an OFDM-Based Higher-Order Modulation Scheme in Multipath Fading Channels

    No full text
    Fifth-generation (5G) mobile systems are a necessary step toward successfully achieving further increases in data rates. As the use of higher-order quadrature amplitude modulation (QAM) is expected to increase data rates within a limited bandwidth, we propose a method for orthogonal frequency division multiplexing (OFDM)-based 1024- and 4096-QAM transmission with soft-decision Viterbi decoding for use in 5G mobile systems. Through evaluation of the transmission performance of the proposed method over multipath fading channels using link-level simulations, we determine the bit error rate (BER) performance of OFDM-based 1024- and 4096-QAM as a function of coding rate under two multipath fading channel models: extended pedestrian A (EPA) and extended vehicular A (EVA). We also demonstrate the influence of phase error on OFDM-based 1024- and 4096-QAM and clarify the relationship between phase error and the signal-to-noise ratio (SNR) penalty required to achieve a BER of 1 &#215; 10&#8722;2. This work provides an effective solution for introducing higher-order modulation schemes in 5G and beyond
    corecore