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1. Introduction  

In this chapter, we introduce a stair-climbing robot developed in our laboratory. This robot 
consists basically of two body parts connected by springs, and hops as a result of the 
vibration of a two-degrees-of-freedom (2-DOF) system. The excellent combination between 
the frequencies of the robotic body vibration and the tread-riser interval of stairs enables a 
small and simple robot fast stair climbing, soft landing, and energy saving.  
In an attempt to give the robot mobility in an environment such as an office building having 
steps and stairs, various mechanisms have been proposed and developed. Each one of 
which has different characteristics. For example, wheel-based robots are very simple in 
terms of both mechanical design and control, and they can travel quickly and stably. But 
their size tends to be big for climbing stairs, as they cannot surmount a riser higher than 
their wheel radius. On the other hand, although crawler-type robots can climb over a riser 
higher than a wheel-based robot, they are slow and noisy. Typical examples of crawler-type 
robots are TAQT (Hirose et al., 1992) that can carry a human and Kenaf (Yoshida et al., 2007) 
for rescue operations. Legged robots, especially humanoid ones, are well suited for climbing 
stairs, but require many DOFs and complex control. Honda’s ASIMO (ASIMO OFFICIAL 
SITE), AIST’s HRP (Harada et al., 2006) and Waseda University’s legged robot (Sugahara et 
al., 2007) are good examples. In addition, the hybrids of these types have been proposed and 
have improved upon mutual demerits. Chari-be (Nakajima et al., 2004), with two wheels 
and four legs, travels quickly on its wheels over flat terrain, and climbs using its legs in 
rough terrain such as a step and stairs. A biped-type robot with a wheel at the tip of its legs 
(Matsumoto et al., 1999) climbs stairs smoothly. RHex (Altendorfer et al., 2001) has six 
compliant rotary legs and travels speedily not only up and down stairs, but also even 
uncertain terrain such as a swamp. Moreover, modular robots such as an articulated snake-
like robot and special mechanisms for stairs have also been proposed. Yim’s snake-like robot 
(Yim et al., 2001) climbs stairs, transforming its own loop form into a stair shape. These 
excellent mechanisms have improved the manoeuvrability of the robot for rough terrain, but 
as most are general-purpose robots for rough terrain, a more specialized mechanism must 
be developed if we focus solely on stair-climbing ability in an office building.  
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From this point of view, we have developed a stair-climbing robot specifically for use in an 
office building (Sakaguchi et al., 2007, Asai et al. 2008 & Kikuchi et al., 2008). Our robot 
cannot climb stairs with various-height or irregular risers smoothly, but it does climb stairs 
with a priori determined regular risers rapidly (less than 1.0 s per step), softly (less than the 
impact at takeoff, at the landing point), and economically. Furthermore, the mechanical 
design and control are quite simple, and additionally the height of the robot is almost the 
same as the common stair riser. These features are very important for practical tasks such as 
monitoring the situation in an office. Here, we introduce the hopping mechanism and 
property, and show the experimental result of the fast stair climbing and soft-landing.  

 
2. Hopping mechanism and robotic design 

The mathematical hopping model consists of two mass points, m1 and m2, connected by a 
spring, as shown in Fig. 1. The lower mass point, m2, hops if, and only if, the lifting force 
provided by the spring, k(z1-z2), and the wire, Tw, exceeds the force of gravity on the lower 
mass, m2g. The trajectories of the two mass points during hopping evolve based on the 
reduced mass, the mass ratio between the upper and lower masses, spring constant, k, the 
friction of the shaft, and stored spring energy. Figure 2 shows a manufactured robot with 
this hopping mechanism. The robot consists of an upper body part (Body 1) and a lower 
body part (Body 2) connected by four springs and a wire. Here, the upper body part has a 
CPU (H8/tiny) for control, a receiver, a position sensitive detector (PSD), a reel with a gear 
and a motor, a solenoid, and batteries (CPU: 7.4V, motor: 30V for the reel and 22.2V for the 
travel, and solenoid: 44.4V). The lower body part has two motors for translational travel, 
four 56-mm diameter wheels, four shafts and two acceleration sensors for the z direction. 
The robot first stores the spring energy by reeling in the wire. The reel mechanism is then 
detached by the solenoid, and the robot hops by releasing the stored spring energy. Here, 
body parts 1 and 2 correspond to the mass points of the two-dimensional mathematical 
model shown in Fig. 1. The robot is 370 mm tall, 155 mm wide and 140 mm long. Also, the 
robot has no suspension to act as a damper, as we scrutinize the impact acceleration of body 
parts.  
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Fig. 1. Two-dimensional mathematical model of hopping mechanism 
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From this point of view, we have developed a stair-climbing robot specifically for use in an 
office building (Sakaguchi et al., 2007, Asai et al. 2008 & Kikuchi et al., 2008). Our robot 
cannot climb stairs with various-height or irregular risers smoothly, but it does climb stairs 
with a priori determined regular risers rapidly (less than 1.0 s per step), softly (less than the 
impact at takeoff, at the landing point), and economically. Furthermore, the mechanical 
design and control are quite simple, and additionally the height of the robot is almost the 
same as the common stair riser. These features are very important for practical tasks such as 
monitoring the situation in an office. Here, we introduce the hopping mechanism and 
property, and show the experimental result of the fast stair climbing and soft-landing.  

 
2. Hopping mechanism and robotic design 

The mathematical hopping model consists of two mass points, m1 and m2, connected by a 
spring, as shown in Fig. 1. The lower mass point, m2, hops if, and only if, the lifting force 
provided by the spring, k(z1-z2), and the wire, Tw, exceeds the force of gravity on the lower 
mass, m2g. The trajectories of the two mass points during hopping evolve based on the 
reduced mass, the mass ratio between the upper and lower masses, spring constant, k, the 
friction of the shaft, and stored spring energy. Figure 2 shows a manufactured robot with 
this hopping mechanism. The robot consists of an upper body part (Body 1) and a lower 
body part (Body 2) connected by four springs and a wire. Here, the upper body part has a 
CPU (H8/tiny) for control, a receiver, a position sensitive detector (PSD), a reel with a gear 
and a motor, a solenoid, and batteries (CPU: 7.4V, motor: 30V for the reel and 22.2V for the 
travel, and solenoid: 44.4V). The lower body part has two motors for translational travel, 
four 56-mm diameter wheels, four shafts and two acceleration sensors for the z direction. 
The robot first stores the spring energy by reeling in the wire. The reel mechanism is then 
detached by the solenoid, and the robot hops by releasing the stored spring energy. Here, 
body parts 1 and 2 correspond to the mass points of the two-dimensional mathematical 
model shown in Fig. 1. The robot is 370 mm tall, 155 mm wide and 140 mm long. Also, the 
robot has no suspension to act as a damper, as we scrutinize the impact acceleration of body 
parts.  
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Fig. 2. Wheel-based robot with hopping mechanism 

 
3. Mathematical model for simulation 

The robot is modeled simply as a 2-DOF spring-mass system. If the posture of the robot can 
be neglected, the equations of motion are given by 

(m1+m2) x1’’ = fx (1a) 
m1 z1’’ + k(z1 - z2) = - m1g - Tw - μt Ff  (1b) 

m2 z2’’ + k(z2 - z1) = - m2g + Tw + μt Ff + N  
where (x1, z1) and (x2, z2) are coordinates for each body part (z1=z2 at the natural length of the 
spring), m1 and m2 are the masses of body parts 1 and 2, k is the spring constant, fx is the 
motor force for horizontal travel, μtFf is the friction of the shaft (the magnitude of Ff is 
determined by the pilot experiment and the sign is determined by the relative vertical 
velocity between the two masses, d(z2-z1)/dt), and N is the reaction of the ground. The 
ground is simply modeled by a spring and a damper, as shown Fig. 1. Tw, the wire tension is 
a positive value or zero for tensional or relaxant conditions, respectively. Note that as the 
posture of the robot is neglected for simplification, x1 is always equal to x2.  
Here, the condition for takeoff of lower mass, z2, is given by 

m2 g < k(z1 - z2) + Tw - μt Ff (2) 
Assuming that the friction of shaft, μtFf, is neglected (Ff=0) and that we do not control the 
wire tension (Tw=0) during hopping, the trajectories of the two masses at the time t after 
takeoff, i.e., during hopping (fx=0, N=0, and z2>0), are as follows,  
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 x1 = x2 = vx t +D (3a) 
z1 = h M / m1 sin(ω t + φ) – g (t - T)2/2 + C (3b) 

z2 =- h M / m2 sin(ω t + φ) – g (t - T)2/2 + C  
ω = (k/M)0.5, M=1/(1/m1 + 1/m2) (3c) 

where vx is the horizontal velocity at takeoff, D is the starting point of takeoff, h,  φ, T, and C 
are constants determined by the initial conditions, ω is the angular frequency, and M is the 
reduced mass between the two masses. Hence, the horizontal velocity is constant during 
hopping. The air resistance is neglected. The first terms on the right side of the z equations, 
Eq. (3b), represent vibration caused by the two body parts. Although two natural 
frequencies must exist because the system has a 2-DOF configuration, the lower natural 
frequency is zero in this case. The second terms on the right side of the z equations represent 
the parabolic motion of the center of mass (COM). Consequently, the hopping motion of the 
robot after takeoff is represented by the combination of the vibration of the mass points and 
the parabolic motion of the COM. Hence, the point at which the velocity in the z direction of 
the vibration of body part 2 and that of the parabolic motion of the COM are canceled out, is 
the soft-landing point. For later discussion, we define “soft-landing” as a landing in which 
the vertical velocity of the lower body part is zero (z2’≈0), the acceleration is zero (z2’’≈0), 
and the third differential is zero or negative (z2’’’≤0) at landing height, H (where H is the 
riser height). Figure 3 shows two typical examples of the trajectories of the mass points, z1 
and z2, during hopping. The red dashed line depicts the hopping for the higher riser, and 
the blue solid line is that for the lower riser. The points “A” and “B” are ideal landing points, 
i.e., mathematical stationary and inflection points. These robots can softly climb stairs with 
risers of H = 0.1 [m] and H = 0.2 [m], respectively. Note that the closer the z2’’’ is to zero, the 
lower the landing impact for noise, because the lower body part can fly parallel to the tread.  
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Fig. 3. Two typical examples of trajectories of mass points, z1 and z2, during hopping 
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 x1 = x2 = vx t +D (3a) 
z1 = h M / m1 sin(ω t + φ) – g (t - T)2/2 + C (3b) 

z2 =- h M / m2 sin(ω t + φ) – g (t - T)2/2 + C  
ω = (k/M)0.5, M=1/(1/m1 + 1/m2) (3c) 

where vx is the horizontal velocity at takeoff, D is the starting point of takeoff, h,  φ, T, and C 
are constants determined by the initial conditions, ω is the angular frequency, and M is the 
reduced mass between the two masses. Hence, the horizontal velocity is constant during 
hopping. The air resistance is neglected. The first terms on the right side of the z equations, 
Eq. (3b), represent vibration caused by the two body parts. Although two natural 
frequencies must exist because the system has a 2-DOF configuration, the lower natural 
frequency is zero in this case. The second terms on the right side of the z equations represent 
the parabolic motion of the center of mass (COM). Consequently, the hopping motion of the 
robot after takeoff is represented by the combination of the vibration of the mass points and 
the parabolic motion of the COM. Hence, the point at which the velocity in the z direction of 
the vibration of body part 2 and that of the parabolic motion of the COM are canceled out, is 
the soft-landing point. For later discussion, we define “soft-landing” as a landing in which 
the vertical velocity of the lower body part is zero (z2’≈0), the acceleration is zero (z2’’≈0), 
and the third differential is zero or negative (z2’’’≤0) at landing height, H (where H is the 
riser height). Figure 3 shows two typical examples of the trajectories of the mass points, z1 
and z2, during hopping. The red dashed line depicts the hopping for the higher riser, and 
the blue solid line is that for the lower riser. The points “A” and “B” are ideal landing points, 
i.e., mathematical stationary and inflection points. These robots can softly climb stairs with 
risers of H = 0.1 [m] and H = 0.2 [m], respectively. Note that the closer the z2’’’ is to zero, the 
lower the landing impact for noise, because the lower body part can fly parallel to the tread.  
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Fig. 3. Two typical examples of trajectories of mass points, z1 and z2, during hopping 

 

 

4. Hopping properties 

In this section, we present the characteristics during the hopping motion. The trajectories of 
the robot change, depending mainly on passive parameters such as reduced mass, the mass 
ratio between the upper and lower masses, and the spring constant and active parameters 
such as initial spring contraction, wire tension, and horizontal traveling driving force. 
Passive parameters are mechanical design parameters and should be designed a priori for 
the specification of the stairs in an office building. On the other hand, active parameters are 
control parameters and can be changed in accordance with a local irregular step, etc.  
We first show the frequency characteristic, one of the characteristics of the passive 
parameters, during the hopping motion. Figure 4 shows the relation between the reduced 
mass and the angular frequency for three spring constants. Here, the lines depict the results 
obtained by Eq. (3c) and the points are the results performed by 10 hopping experiments for 
each point. The passive parameters are as follows: The spring constants, k, are 800, 1,200, 
and 1,600 N/m. In the experiments, reduced masses, M, of 0.4, 0.5, 0.6, 0.7 and 0.8 kg are 
used. Here, when the reduced mass is 0.6 kg and the mass ratio is 2.0, the masses of the 
upper and lower body parts mean 1.8 kg and 0.9 kg, respectively, and the total mass is 2.7 
kg. This figure implies that the angular frequency can almost be controlled by ω in Eq. (3c), 
that is, the reduced mass and the spring constant, because, although the experimental values 
became slightly higher than the simulation results in accordance with the increase in the 
spring constant, the errors can be estimated simply from the figure and the standard 
deviations were also very small. 
Second, we show the trajectories of body parts 1 and 2 for mass ratios, m1/m2, of 0.5 (Case A) 
and 4.0 (Case B), as two typical examples obtained in numerical simulations (Fig. 5). Here, 
the reduced mass, M, is constant at 0.7 kg, the spring constant, k, is 2,000 N/m, and the 
initial contraction of the spring, h, is 0.1 m. The thin lines represent body part 1 and the bold 
lines are body part 2. The dashed thin lines represent the velocities of body part 1 and the 
dashed bold lines are the velocity of boby part 2. This figure shows that the amplitudes of 
body parts 1 and 2 depend on the mass ratio, as shown by the vibration term in Eq. (3b). 
That is, if the reduced mass is constant, the amplitude of body part 1 is large when the mass 
of body part 2 is large, and the amplitude of body part 2 is large when the mass of body part 
1 is large. In addition, the hopping height of the COM increases with decreasing the mass of 
body part 2, m2. Furthermore, the possible points of soft-landing (z2’≈0, z2’’≈0, and z2’’’ ≤0) 
exist in the neighborhood of crests of the vibration of body part 2, as shown in Cases A and 
B. Note that we cannot choose the highest hopping point, i.e., a vertex, as the landing point, 
because the robot has a physical body length, L, and cannot land both the front and rear 
wheels on the stairs simultaneously. Additionally, we also cannot reduce the mass of body 
part 2 dramatically, as a main drive unit such as a motor is mounted on body part 2.  
Next, as active hopping characteristics, Fig. 6 shows examples of the hopping motion for the 
initial contractions of the spring of h = 0.070, 0.085, and 0.100 [m]. Here, the reduced mass, M, 
is 0.7 kg, the mass ratio, m1/m2, is 2.0, the spring constant, k, is 1,600 N/m and the horizontal 
velocity, vx, is 1.2 m/s. From this, we find that with the increase in the initial contraction of 
the spring, h, the temporal axis of the parabolic motion of the COM, T, is shifted to the right, 
the hopping height of the COM is increased, but the angular frequency, ω, is unchanged. 
Also, we can simply find that the spatio-frequency represented by x-z coordinates can be 
controlled by the horizontal velocity vx. The slower the horizontal velocity, the higher the 
spatio-frequency. The correspondence between the spatio-frequencies of the lower body 
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part trajectory and the stair configuration, i.e., the tread-riser interval, enables economic and 
stable stair climbing by the robot. Moreover, as the wire can pull the body parts mutually, 
the robot can actively control the possible point of soft landing by the wire tension.  

 
Fig. 4. Relation between reduced mass and angular frequency for different spring constants 
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Fig. 5. Trajectories of mass and velocities: in Case A, the mass ratio is 0.5, and in Case B, the 
mass ratio is 4.0  
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part trajectory and the stair configuration, i.e., the tread-riser interval, enables economic and 
stable stair climbing by the robot. Moreover, as the wire can pull the body parts mutually, 
the robot can actively control the possible point of soft landing by the wire tension.  
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Fig. 6. Trajectories of mass points 1 and 2 during hopping for different initial spring 
contractions 

 
Fig. 7. Trajectories of two body parts and impact accelerations during hopping motion 

 
5. Demonstration of stair climbing 

5.1 Climbing up a step 
We first demonstrate fast and soft climbing up a riser 0.21 m in height. From the above 
discussion, we can control the landing point and condition by adjusting the mechanical 
design and control parameters. Here, we set the parameters as follows: the reduced mass, M, 
of 0.55 kg, the mass ratio, m1/m2, of 1.32, the spring constant, k, of 1,600 N/m, the initial 
contraction of the spring, h, of 0.13 m, and the horizontal velocity, vx, of 1.2 m/s. Note that 
the value of 0.21 m is 7.5 times higher than the wheel radius of the robot and corresponds 
approximately to the common riser height of stairs. Also, the contraction of the spring, h, is 
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measured by the PSD with a sampling time of 30 ms. Figure 7 shows the trajectories of the 
robot during the hopping motion and the impact accelerations obtained from the front and 
rear sensors mounted in the lower body part. The impact acceleration at the moment of 
landing was approximately 8 G, which was less than the maximum acceleration during 
takeoff, 19 G, and was close to that experienced during flight, i.e., almost 10 G. As the 
impact acceleration by free-fall from the maximum hopping height to the step (Hd shown in 
Fig. 7) was approximately 33 G, the soft-landing of this robot reduced the impact by 76%. 
However, high impact acceleration at the moment of takeoff was observed, unfortunately. 
This is not due to impact with the ground, but rather due to the plate deflection of body part 
2. The actual acceleration of lower body part at the moment of takeoff was less than 10 G. 
We need to improve the geometrical moment of inertia of body part 2. Note that we realized 
fast and soft step climbing by 0.27 m in height.  

 
5.2 Climbing up a flight of stairs 
Next, we demonstrate fast and soft stair climbing. The trick in stair climbing is to 
synchronize the spatio-frequency of the stairs, i.e., the tread-riser intervals, and the body 
vibration. It is simple and easy in a mathematical model, but it is not in practice. Figure 8 
shows three processes for continuous hopping–takeoff, landing, and reeling in–and the 
tread length required for each hop. The horizontal traveling distance during these three 
processes, the required tread length, can be quite simply controlled by the horizontal 
velocity vx, if the robot length, L, is zero. However, the following constraints exist in practice. 
First, after takeoff, the front wheels must jump up to the edge of the step (takeoff phase in 
Fig. 8), next, before landing, the rear wheels must clear the edge of the step (landing phase 
in Fig. 8), and then the robot must reel in the wire for next hopping (reeling-in phase in Fig. 
8). When the horizontal traveling distance during these three phases, DT+DL+DR, is equal to 
or less than the tread length, the robot can climb a flight of stairs. Thus, this is the minimum 
required tread length, and the shorter, the better. From these constraints, the robot must 
jump up to the riser height, H, at t = DT/vx and the minimum landing phase distance, DL, is 
equal to the body length, L. Also, since the reeling-in phase distance, DR, depends only on 
the motor torque to reel in the wire, the larger the motor torque, the shorter the reeling-in 
phase distance. However, as the exceedingly high-power motor makes the upper mass 
heavy and the wire tension strong, it lifts up the lower body part. Additionally, although the 
reeling-in phase distance can be shortened by reeling in the wire before landing, the control 
of the soft landing point becomes difficult as the passive vibration characteristics change. 
Thus, the wire is reeled in after landing for simplification in this experiment.  
Figure 9 shows an example of trajectories of two body parts (blue and red lines) and impact 
accelerations (green and orange lines) based on the following parameters: the reduced mass, 
M, of 0.79 kg, the mass ratio, m1/m2, of 2.17, the spring constant, k, of 2,000 N/m, the initial 
spring constriction, h, of 0.12 m, and the horizontal velocity, vx, of 0.90 m/s for the riser 
height, H, of 0.20 m. Additionally, Fig. 10 shows stroboscopic pictures of continuous 
hopping to climb two steps. As shown in Fig. 9, the required tread length was 0.74 m (Note 
that to avoid clashing into the riser wall, a margin safety of 2.1 was introduced. The required 
tread length obtained by the numerical simulation was 0.35 m). The impact accelerations 
were 28 G and 37 G for first and second takeoffs and 10 G and 6 G for first and second 
landings. The impact acceleration at the moment of landing was less than that during flight. 
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measured by the PSD with a sampling time of 30 ms. Figure 7 shows the trajectories of the 
robot during the hopping motion and the impact accelerations obtained from the front and 
rear sensors mounted in the lower body part. The impact acceleration at the moment of 
landing was approximately 8 G, which was less than the maximum acceleration during 
takeoff, 19 G, and was close to that experienced during flight, i.e., almost 10 G. As the 
impact acceleration by free-fall from the maximum hopping height to the step (Hd shown in 
Fig. 7) was approximately 33 G, the soft-landing of this robot reduced the impact by 76%. 
However, high impact acceleration at the moment of takeoff was observed, unfortunately. 
This is not due to impact with the ground, but rather due to the plate deflection of body part 
2. The actual acceleration of lower body part at the moment of takeoff was less than 10 G. 
We need to improve the geometrical moment of inertia of body part 2. Note that we realized 
fast and soft step climbing by 0.27 m in height.  

 
5.2 Climbing up a flight of stairs 
Next, we demonstrate fast and soft stair climbing. The trick in stair climbing is to 
synchronize the spatio-frequency of the stairs, i.e., the tread-riser intervals, and the body 
vibration. It is simple and easy in a mathematical model, but it is not in practice. Figure 8 
shows three processes for continuous hopping–takeoff, landing, and reeling in–and the 
tread length required for each hop. The horizontal traveling distance during these three 
processes, the required tread length, can be quite simply controlled by the horizontal 
velocity vx, if the robot length, L, is zero. However, the following constraints exist in practice. 
First, after takeoff, the front wheels must jump up to the edge of the step (takeoff phase in 
Fig. 8), next, before landing, the rear wheels must clear the edge of the step (landing phase 
in Fig. 8), and then the robot must reel in the wire for next hopping (reeling-in phase in Fig. 
8). When the horizontal traveling distance during these three phases, DT+DL+DR, is equal to 
or less than the tread length, the robot can climb a flight of stairs. Thus, this is the minimum 
required tread length, and the shorter, the better. From these constraints, the robot must 
jump up to the riser height, H, at t = DT/vx and the minimum landing phase distance, DL, is 
equal to the body length, L. Also, since the reeling-in phase distance, DR, depends only on 
the motor torque to reel in the wire, the larger the motor torque, the shorter the reeling-in 
phase distance. However, as the exceedingly high-power motor makes the upper mass 
heavy and the wire tension strong, it lifts up the lower body part. Additionally, although the 
reeling-in phase distance can be shortened by reeling in the wire before landing, the control 
of the soft landing point becomes difficult as the passive vibration characteristics change. 
Thus, the wire is reeled in after landing for simplification in this experiment.  
Figure 9 shows an example of trajectories of two body parts (blue and red lines) and impact 
accelerations (green and orange lines) based on the following parameters: the reduced mass, 
M, of 0.79 kg, the mass ratio, m1/m2, of 2.17, the spring constant, k, of 2,000 N/m, the initial 
spring constriction, h, of 0.12 m, and the horizontal velocity, vx, of 0.90 m/s for the riser 
height, H, of 0.20 m. Additionally, Fig. 10 shows stroboscopic pictures of continuous 
hopping to climb two steps. As shown in Fig. 9, the required tread length was 0.74 m (Note 
that to avoid clashing into the riser wall, a margin safety of 2.1 was introduced. The required 
tread length obtained by the numerical simulation was 0.35 m). The impact accelerations 
were 28 G and 37 G for first and second takeoffs and 10 G and 6 G for first and second 
landings. The impact acceleration at the moment of landing was less than that during flight. 

 

Also, the stair climbing time per step was 0.77 s. To shorten the required tread length is one 
of the future tasks as the common tread length is almost 0.4 m.  
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Fig. 8. Hopping processes and required tread length 

 
Fig. 9. Trajectories of two body parts and impact acceleration during stair climbing  
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Fig. 10. Stroboscopic images of stair climbing 

 
6. Demonstration of step descending 

Finally, we demonstrate fast and soft descending of steps 0.20 m in height. The hopping 
mechanism is almost the same as for climbing. However, the degree of difficulty is quite 
different. As mentioned in Section 3, the soft-landing point is the location at which the 
velocity in the z-direction of vibration of lower body part, -hMω/m2 cos(ωt+φ), and that of 
the parabolic motion of the COM, –g(t-T), are canceled out. Here, although the maximum of 
the former is hMω/m2, the latter becomes a large negative value with time, t, because of 
descending. In climbing, as the robot lands near the top of the parabolic motion, as shown in 
Fig. 8, and the descending velocity by parabolic motion is low, there are many parameters, 
hMω/m2 cos(ωt+φ), which can cancel out the descending velocity. In contrast, in descending, 
as the robot lands considerably below the top of the parabolic motion, as the dashed line 
shows in Fig. 11, and the descending velocity is very high, the parameters, hMω/m2 
cos(ωt+φ), which can cancel it out, decrease dramatically. Thus, we use another technique in 
descending. Hence, the robot does not jump up, but glides from the step horizontally, starts 
to vibrate by detaching the reel mechanism while descending, and then lands softly, as the 
solid line shows in Fig. 11. This method requires posture control at takeoff, but decreases the 
descending velocity by the parabolic motion on landing and makes the required tread 
length short. 
Figure 12 shows the trajectories of two body parts (blue and red lines) and impact 
accelerations (green and orange lines) during the hopping motion. Here, the parameters are: 
the reduced mass, M, of 0.74 kg, the mass ratio, m1/m2, of 2.04, the spring constant, k, of 
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Fig. 10. Stroboscopic images of stair climbing 

 
6. Demonstration of step descending 

Finally, we demonstrate fast and soft descending of steps 0.20 m in height. The hopping 
mechanism is almost the same as for climbing. However, the degree of difficulty is quite 
different. As mentioned in Section 3, the soft-landing point is the location at which the 
velocity in the z-direction of vibration of lower body part, -hMω/m2 cos(ωt+φ), and that of 
the parabolic motion of the COM, –g(t-T), are canceled out. Here, although the maximum of 
the former is hMω/m2, the latter becomes a large negative value with time, t, because of 
descending. In climbing, as the robot lands near the top of the parabolic motion, as shown in 
Fig. 8, and the descending velocity by parabolic motion is low, there are many parameters, 
hMω/m2 cos(ωt+φ), which can cancel out the descending velocity. In contrast, in descending, 
as the robot lands considerably below the top of the parabolic motion, as the dashed line 
shows in Fig. 11, and the descending velocity is very high, the parameters, hMω/m2 
cos(ωt+φ), which can cancel it out, decrease dramatically. Thus, we use another technique in 
descending. Hence, the robot does not jump up, but glides from the step horizontally, starts 
to vibrate by detaching the reel mechanism while descending, and then lands softly, as the 
solid line shows in Fig. 11. This method requires posture control at takeoff, but decreases the 
descending velocity by the parabolic motion on landing and makes the required tread 
length short. 
Figure 12 shows the trajectories of two body parts (blue and red lines) and impact 
accelerations (green and orange lines) during the hopping motion. Here, the parameters are: 
the reduced mass, M, of 0.74 kg, the mass ratio, m1/m2, of 2.04, the spring constant, k, of 

 

1,200 N/m, the initial contraction of the spring, h, of 0.11 m, and the horizontal velocity, vx, 
of 1.0 m/s. The impact acceleration at the moment of landing was approximately 14 G, 
which was close to that experienced during flight, i.e., almost 10 G. As the impact 
acceleration under free-fall from the riser height to the step was 77 G, the soft-landing of this 
robot reduced the impact by 82%. Figure 13 shows stroboscopic images of step descending. 
The posture at takeoff was controlled by a wheelie.  

H 

Top of the parabolic motion 

Landing point 

-hMω/m2 cos(ωt+φ) 

-g(t-T) 

 
Fig. 11. Two methods for descending stairs  
 

 
Fig. 12. Trajectories of the two body parts and impact accelerations during hopping motion 
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Fig. 13. Stroboscopic images of step descending 

 
7. Conclusion 

We introduced a wheel-based stair-climbing robot with a hopping mechanism for stair-
climbing. The robot, consisting of two body parts connected by springs, climbed stairs 
quickly, softly, and economically by using the vibration of a two-degrees-of-freedom system.  
In the future, we intend to shorten the required tread length by controlling the wire tension 
and minimizing the body length to realize a practical stair-climbing robot.  
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Fig. 13. Stroboscopic images of step descending 

 
7. Conclusion 

We introduced a wheel-based stair-climbing robot with a hopping mechanism for stair-
climbing. The robot, consisting of two body parts connected by springs, climbed stairs 
quickly, softly, and economically by using the vibration of a two-degrees-of-freedom system.  
In the future, we intend to shorten the required tread length by controlling the wire tension 
and minimizing the body length to realize a practical stair-climbing robot.  
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