13 research outputs found

    Facilitating motor imagery-based brain–computer interface for stroke patients using passive movement

    Get PDF
    Motor imagery-based brain–computer interface (MI-BCI) has been proposed as a rehabilitation tool to facilitate motor recovery in stroke. However, the calibration of a BCI system is a time-consuming and fatiguing process for stroke patients, which leaves reduced time for actual therapeutic interaction. Studies have shown that passive movement (PM) (i.e., the execution of a movement by an external agency without any voluntary motions) and motor imagery (MI) (i.e., the mental rehearsal of a movement without any activation of the muscles) induce similar EEG patterns over the motor cortex. Since performing PM is less fatiguing for the patients, this paper investigates the effectiveness of calibrating MI-BCIs from PM for stroke subjects in terms of classification accuracy. For this purpose, a new adaptive algorithm called filter bank data space adaptation (FB-DSA) is proposed. The FB-DSA algorithm linearly transforms the band-pass-filtered MI data such that the distribution difference between the MI and PM data is minimized. The effectiveness of the proposed algorithm is evaluated by an offline study on data collected from 16 healthy subjects and 6 stroke patients. The results show that the proposed FB-DSA algorithm significantly improved the classification accuracies of the PM and MI calibrated models (p < 0.05). According to the obtained classification accuracies, the PM calibrated models that were adapted using the proposed FB-DSA algorithm outperformed the MI calibrated models by an average of 2.3 and 4.5 % for the healthy and stroke subjects respectively. In addition, our results suggest that the disparity between MI and PM could be stronger in the stroke patients compared to the healthy subjects, and there would be thus an increased need to use the proposed FB-DSA algorithm in BCI-based stroke rehabilitation calibrated from PM

    Spatial speech processing for multi-party teleconferencing

    No full text
    3D audio reproduction is expected to be widely deployed in applications such as entertainment, simulation and communication. This research focuses on developing a structural model based on 3D audio reproduction to deliver toll-quality speech for the implementation of multi-channel speech coding in teleconferencing. In this model, a monoaural speech signal is synthesized into a binaural signal by reproducing the sound localization cues for each ear so as to create the perceived position of that signal.Master of Engineerin

    Modeling EEG-based motor imagery with session to session online adaptation

    No full text
    Subject-specific calibration plays an important role in electroencephalography (EEG)-based Brain-Computer Interface (BCI) for Motor Imagery (MI) detection. A calibration session is often introduced to build a subject specific model, which then can be deployed into BCI system for MI detection in the following rehabilitation sessions. The model is termed as a fixed calibration model. Progressive adaptive models can also be built by using data not only from calibration session, but also from available rehabilitation sessions. It was reported that the progressive adaptive model yielded significant improved MI detection compared to the fixed model in a retrospective clinical study. In this work, we deploy the progressive adaptation model in a BCI-based stroke rehabilitation system and bring it online. We dub this system nBETTER (Neurostyle Brain Exercise Therapy Towards Enhanced Recovery). A clinical trial using the nBETTER system was conducted to evaluate the performance of 11 stroke patients who underwent a calibration session followed by 18 rehabilitation sessions over 6 weeks. We conduct retrospective analysis to compare the performance of various modeling strategies: the fixed calibration model, the online progressive adaptation model and a light-weight adaptation model, where the second one is generated online by nBETTER system and the other two models are obtained retrospectively. The mean accuracy of the three models across 11 subjects are 68.17%, 74.04% and 74.53% respectively. Statistical test conducted on the three groups using ANOVA yields a p-value of 9.83-e06. The test result shows that the two adaptation models both have significant different mean from fixed mode. Hence our study confirmed the effectiveness of using the progressive adaptive model for EEGbased BCI to detect MI in an online setting.ASTAR (Agency for Sci., Tech. and Research, S’pore)Accepted versio

    Augmenting cognitive processes in robot-assisted motor rehabilitation

    No full text
    Abstract — Cognitive processes, such as motor intention, at-tention, and higher level motivational states are important factors that govern motor performance and learning. Current robot-assisted rehabilitative programs focus only on the physical aspects of training. In this paper, we propose a framework for motor rehabilitation based on the augmentation of cognitive channels of patient-robot interactions and using it to deliver a more optimal therapy. By examining the cognitive processes involved in motor control and adaptation, it is argued that optimal therapy needs to be considered in the context of a complete motor scheme consisting not only of sensorimotor signals, but also their interactions with cognitive operations, such as motor planning, attention, and motivation, which mediate motor learning. We outline a few BCI-based modules for the detection and monitoring of relevant cognitive processes, which provide inputs for the robot to automatically modulate parameters of the rehabilitation protocol. Preliminary inves-tigations on a BCI module for detection of motor intention, performed on a small group of stroke patients, show feasible accuracies. I

    Scalp EEG-based pain detection using convolutional neural network

    No full text
    Pain is an integrative phenomenon coupled with dynamic interactions between sensory and contextual processes in the brain, often associated with detectable neurophysiological changes. Recent advances in brain activity recording tools and machine learning technologies have intrigued research and development of neurocomputing techniques for objective and neurophysiology-based pain detection. This paper proposes a pain detection framework based on Electroencephalogram (EEG) and deep convolutional neural networks (CNN). The feasibility of CNN is investigated for distinguishing induced pain state from resting state in the recruitment of 10 chronic back pain patients. The experimental study recorded EEG signals in two phases: 1. movement stimulation (MS), where induces back pain by executing predefined movement tasks; 2. video stimulation (VS), where induces back pain perception by watching a set of video clips. A multi-layer CNN classifies the EEG segments during the resting state and the pain state. The novel approach offers high and robust performance and hence is significant in building a powerful pain detection algorithm. The area under the receiver operating characteristic curve (AUC) of our approach is 0.83 ± 0.09 and 0.81 ± 0.15, in MS and VS, respectively, higher than the state-of-the-art approaches. The sub-brain-areas are also analyzed, to examine distinct brain topographies relevant for pain detection. The results indicate that MS-induced pain tends to evoke a generalized brain area, while the evoked area is relatively partial under VS-induced pain. This work may provide a new solution for researchers and clinical practitioners on pain detection.Published versio

    Combining EPI and motion correction for fMRI human brain images with big motion

    No full text
    Motion correction is an important component in fMRI brain image analysis. Linear registration technique is mostly used in the process based on the assumption that there is not any shape changes of human brain during imaging process. Echo planar imaging (EPI) technique has been widely adapted in fMRI imaging to shorten encoding duration and increase temporal resolution. However, due to the magnetic field inhomogeneity caused by tissues, shape distortion and signal intensity lose are brought into fMRI images by the technique. On the other hand, subject's pose in scanner has a effect on magnetic field inhomogeneity, so the EPI distortions are subject to head movement, especially when the movement is big. As a result, most current motion correction techniques, which are based on rigid registration, cannot handle the problem. In this paper, a technique that combines EPI distortion correction and motion correction to handle the above-mentioned problem is proposed. Since it is almost impossible to obtain ground truth at present, a task-related fMRI BOLD time course image with big motion is selected as experimental material to test its performance. The image is pre-processed with the proposed EPI-motion correction scheme then analyzed by FSL feat tool [1]. Compared with another process with only motion correction and FSL feat analysis, the experimental result using the proposed method has no false activation detection. It is suggested the proposed EPI-motion correction scheme has the ability to handle the fMRI human brain images with big motion

    Learning EEG-based spectral-spatial patterns for attention level measurement

    No full text
    Abstract — In our every day life, our brain is constantly processing information and paying attention, reacting accordingly, to all sorts of sensory inputs (auditory, visual, etc.). In some cases, there is a need to accurately measure a person’s level of attention to monitor a sportsman performance, to detect Attention Deficit Hyperactivity Disorder (ADHD) in children, to evaluate the effectiveness of neuro-feedback treatment, etc. In this paper we propose a novel approach to extract, select and learn spectral-spatial patterns from electroencephalogram (EEG) recordings. Our approach improves over prior-art methods that was, typically, only concerned with power of specific EEG rhythms from few individual channels. In this new approach, spectral-spatial features from multichannel EEG are extracted by a two filtering stages: a filter-bank (FB) and common spatial patterns (CSP) filters. The most important features are selected by a Mutual Information (MI) based feature selection procedure and then classified using Fisher linear discriminant (FLD). The outcome is a measure of the attention level. An experimental study was conducted with 5 healthy young male subjects with their EEG recorded in various attention and non-attention conditions (opened eyes, closed eyes, reading, counting, relaxing, etc.). EEGs were used to train and evaluate the model using 4x4fold cross-validation procedure. Results indicate that the new proposed approach outperforms the prior-art methods and can achieve up to 89.4 % classification accuracy rate (with an average improvement of up to 16%). We demonstrate its application with a two-players attention-based racing car computer game. I

    Motor imagery BCI for upper limb stroke rehabilitation: an evaluation of the EEG recordings using coherence analysis

    No full text
    Brain-computer interface (BCI) technology has the potential as a post-stroke rehabilitation tool, and the efficacy of the technology is most often demonstrated through output peripherals such as robots, orthosis and computers. In this study, the EEG signals recorded during the course of upper limb stroke rehabilitaion using motor imagery BCI were analyzed to better understand the effect of BCI therapy for post-stroke rehabilitation

    Facilitating effects of transcranial direct current stimulation on motor imagery brain-computer interface with robotic feedback for stroke rehabilitation

    Full text link
    OBJECTIVE: To investigate the efficacy and effects of transcranial direct current stimulation (tDCS) on motor imagery brain-computer interface (MI-BCI) with robotic feedback for stroke rehabilitation. DESIGN: A sham-controlled, randomized controlled trial. SETTING: Patients recruited through a hospital stroke rehabilitation program. PARTICIPANTS: Subjects (N=19) who incurred a stroke 0.8 to 4.3 years prior, with moderate to severe upper extremity functional impairment, and passed BCI screening. INTERVENTIONS: Ten sessions of 20 minutes of tDCS or sham before 1 hour of MI-BCI with robotic feedback upper limb stroke rehabilitation for 2 weeks. Each rehabilitation session comprised 8 minutes of evaluation and 1 hour of therapy. MAIN OUTCOME MEASURES: Upper extremity Fugl-Meyer Motor Assessment (FMMA) scores measured end-intervention at week 2 and follow-up at week 4, online BCI accuracies from the evaluation part, and laterality coefficients of the electroencephalogram (EEG) from the therapy part of the 10 rehabilitation sessions. RESULTS: FMMA score improved in both groups at week 4, but no intergroup differences were found at any time points. Online accuracies of the evaluation part from the tDCS group were significantly higher than those from the sham group. The EEG laterality coefficients from the therapy part of the tDCS group were significantly higher than those of the sham group. CONCLUSIONS: The results suggest a role for tDCS in facilitating motor imagery in stroke
    corecore