107 research outputs found

    Employing lytic phage-mediated horizontal gene transfer in Lactococcus lactis

    Get PDF
    Lactococcus lactis is a lactic acid bacterium widely used as a starter culture in the manufacture of dairy products, especially a wide variety of cheeses. Improved industrial strains would help to manufacture better food products that can meet the industry's and consumer's demands with respect to e.g. quality, taste, texture and shelf life. Bacteriophage infection of L. lactis starter cultures represents one of the main causes of fermentation failure and consequent economic losses for the dairy industry. In this study, however, we aim at employing bacteriophages for beneficial purposes. We developed an experimental setup to assess whether phage-mediated horizontal gene transfer could be used to enhance the genetic characteristics of L. lactis strains in accordance with the European law regarding the use of genetically modified organisms (GMOs) in the food industry. Although we could not show the transfer of chromosomal DNA we did successfully transduce two dissimilar plasmids from L. lactis strain MG1363 to one of its derivatives employing three different lactococcal bacteriophages

    A Unified Approach for the Total Synthesis of cyclo-Archaeol, iso-Caldarchaeol, Caldarchaeol, and Mycoketide

    Get PDF
    Ir-catalyzed asymmetric alkene hydrogenation is presented as the strategy par excellence to prepare saturated isoprenoids and mycoketides. This highly stereoselective synthesis approach is combined with an established 13 C-NMR method to determine the enantioselectivity of each methyl-branched stereocenter. It is shown that this analysis is fit for purpose and the combination allows the synthesis of the title compounds with a significant increase in efficiency

    A versatile method to separate complex lipid mixtures using 1-butanol as eluent in a reverse-phase UHPLC-ESI-MS system

    Get PDF
    Simple, robust and versatile LC-MS based methods add to the rapid assessment of the lipidome of biological cells. Here we present a versatile RP-UHPLC-MS method using 1-butanol as the eluent, specifically designed to separate different highly hydrophobic lipids. This method is capable of separating different lipid classes of glycerophospholipid standards, in addition to phospholipids of the same class with a different acyl chain composition. The versatility of this method was demonstrated through analysis of lipid extracts of the bacterium Escherichia coli and the archaeon Sulfolobus acidocaldarius. In contrast to 2-propanol-based methods, the 1-butanol-based mobile phase is capable of eluting highly hydrophobic analytes such as cardiolipins, tetraether lipids and mycolic acids during the gradient instead of the isocratic purge phase, resulting in an enhanced separation of cardiolipins and extending the analytical range for RPLC

    Evaluation of a blended care programme for caregivers and working pregnant women to prevent adverse pregnancy outcomes : an intervention study

    Get PDF
    Acknowledgements We thank all the participating hospitals and their referring midwifery practices from the Regional Perinatal Network North-West Netherlands for all their efforts. We also thank Dr Robert de Leeuw (Department of Obstetrics and Gynaecology, Amsterdam UMC) for his support in the development of the P&W app Funding This pilot study received funding from ZonMw, the Netherlands Organisation for Health Research and Development, and is part of the Pregnancy and Birth Program.Peer reviewedPublisher PD

    A promiscuous archaeal cardiolipin synthase enables construction of diverse natural and unnatural phospholipids

    Get PDF
    Cardiolipins (CL) are a class of lipids involved in the structural organization of membranes, enzyme functioning, and osmoregulation. Biosynthesis of CLs has been studied in eukaryotes and bacteria, but has been barely explored in archaea. Unlike the common fatty acyl chain-based ester phospholipids, archaeal membranes are made up of the structurally different isoprenoid-based ether phospholipids, possibly involving a different cardiolipin biosynthesis mechanism. Here, we identified a phospholipase D motif-containing cardiolipin synthase (MhCls) from the methanogen Methanospirillum hungatei. The enzyme was overexpressed in Escherichia coli, purified, and its activity was characterized by LC-MS analysis of substrates/products. MhCls utilizes two archaetidylglycerol (AG) molecules in a transesterification reaction to synthesize glycerol-di-archaetidyl-cardiolipin (Gro-DACL) and glycerol. The enzyme is non-selective to the stereochemistry of the glycerol-backbone and the nature of the lipid tail, as it also accepts phosphatidylglycerol (PG) to generate glycerol-di-phosphatidyl-cardiolipin (Gro-DPCL). Remarkably, in the presence of AG and PG, MhCls formed glycerol-archaetidyl-phosphatidyl-cardiolipin (Gro-APCL), an archaeal-bacterial hybrid cardiolipin species that so far has not been observed in nature. Due to the reversibility of the transesterification, in the presence of glycerol, Gro-DPCL can be converted back into two PG molecules. In the presence of other compounds that contain primary hydroxyl groups (e.g., alcohols, water, sugars), various natural and unique unnatural phospholipid species could be synthesized, including multiple di-phosphatidyl-cardiolipin species. Moreover, MhCls can utilize a glycolipid in the presence of phosphatidylglycerol to form a glycosyl-mono-phosphatidyl-cardiolipin species, emphasizing the promiscuity of this cardiolipin synthase, that could be of interest for bio-catalytic purposes

    Consensus on recording of gas permeable contact lens fit

    Get PDF
    Purpose: To develop a new schematic scheme for efficiently recording the key parameters of gas permeable contact lens (GP) fits based on current consensus. Methods: Over 100 established GP fitters and educators met to discuss the parameters proposed in educational material for evaluating GP fit and concluded on the key parameters that should be recorded. The accuracy and variability of evaluating the fluorescein pattern of GP fit was determined by having 35 experienced contact lens practitioners from across the world, grading 5 images of a range of fits and the topographer simulation of the same fits, in random, order using the proposed scheme. The accuracy of the grading was compared to objective image analysis of the fluorescein intensity of the same images. Results: The key information to record to adequately describe the fit of an GP was agreed as: the manufacturer, brand and lens parameters; settling time; comfort on a 5 point scale; centration; movement on blink on a ±2 scale; and the Primary Fluorescein Pattern in the central, mid-peripheral and edge regions of the lens averaged along the horizontal and vertical lens axes, on a ±2 scale. On average 50-60% of practitioners selected the median grade when subjectively rating fluorescein intensity and this was correlated to objective quantification (r= 0.602, p< 0.001). Objective grading suggesting horizontal median fluorescein intensity was generally symmetrical, as was the vertical meridian, but this was not the case for subjective grading. Simulated fluorescein patterns were subjectively and objectively graded as being less intense than real photographs (p< 0.01). Conclusion: GP fit recording can be standardised and simplified to enhance GP practice. © 2013 British Contact Lens Association

    Correction:Structural and Functional Insights into an Archaeal Lipid Synthase

    Get PDF
    (Cell Reports 33, 108294-1–9.e1–e4; October 20, 2020) In the originally published version of this article, the supplemental information file containing Figures S1–S7 and Table S1 was inadvertently removed. The complete supplemental information file is now included with the paper online. The production team regrets this error

    Structural and Functional Insights into an Archaeal Lipid Synthase

    Get PDF
    The UbiA superfamily of intramembrane prenyltransferases catalyzes an isoprenyl transfer reaction in the biosynthesis of lipophilic compounds involved in cellular physiological processes. Digeranylgeranylglyceryl phosphate (DGGGP) synthase (DGGGPase) generates unique membrane core lipids for the formation of the ether bond between the glycerol moiety and the alkyl chains in archaea and has been confirmed to be a member of the UbiA superfamily. Here, the crystal structure is reported to exhibit nine transmembrane helices along with a large lateral opening covered by a cytosolic cap domain and a unique substrate-binding central cavity. Notably, the lipid-bound states of this enzyme demonstrate that the putative substrate-binding pocket is occupied by the lipidic molecules used for crystallization, indicating the binding mode of hydrophobic substrates. Collectively, these structural and functional studies provide not only an understanding of lipid biosynthesis by substrate-specific lipid-modifying enzymes but also insights into the mechanisms of lipid membrane remodeling and adaptation
    corecore