18 research outputs found

    Exploring the seasonality of reported treated malaria cases in Mpumalanga, South Africa

    Get PDF
    South Africa, having met the World Health Organisation's pre-elimination criteria, has set a goal to achieve malaria elimination by 2018. Mpumalanga, one of three provinces where malaria transmission still occurs, has a malaria season subject to unstable transmission that is prone to sporadic outbreaks. As South Africa prepares to intensify efforts towards malaria elimination, there is a need to understand patterns in malaria transmission so that efforts may be targeted appropriately. This paper describes the seasonality of transmission by exploring the relationship between malaria cases and three potential drivers: rainfall, geography (physical location) and the source of infection (local/imported). Seasonal decomposition of the time series by Locally estimated scatterplot smoothing is applied to the case data for the geographical and source of infection sub-groups. The relationship between cases and rainfall is assessed using a cross-correlation analysis. The malaria season was found to have a short period of no/low level of reported cases and a triple peak in reported cases between September and May; the three peaks occurring in October, January and May. The seasonal pattern of locally-sourced infection mimics the triple-peak characteristic of the total series while imported infections contribute mostly to the second and third peak of the season (Christmas and Easter respectively). Geographically, Bushbuckridge municipality, which exhibits a different pattern of cases, contributed mostly to the first and second peaks in cases while Maputo province (Mozambique) experienced a similar pattern in transmission to the imported cases. Though rainfall lagged at 4 weeks was significantly correlated with malaria cases, this effect was dampened due to the growing proportion of imported cases since 2006. These findings may be useful as they enhance the understanding of the current incidence pattern and may inform mathematical models that enable one to predict the impact changes in these drivers will have on malaria transmission

    Making data map-worthy—enhancing routine malaria data to support surveillance and mapping of <i>Plasmodium falciparum</i> anti-malarial resistance in a pre-elimination sub-Saharan African setting: a molecular and spatiotemporal epidemiology study

    Get PDF
    Background: Independent emergence and spread of artemisinin-resistant Plasmodium falciparum malaria have recently been confirmed in Africa, with molecular markers associated with artemisinin resistance increasingly detected. Surveillance to promptly detect and effectively respond to anti-malarial resistance is generally suboptimal in Africa, especially in low transmission settings where therapeutic efficacy studies are often not feasible due to recruitment challenges. However, these communities may be at higher risk of anti-malarial resistance. Methods: From March 2018 to February 2020, a sequential mixed-methods study was conducted to evaluate the feasibility of the near-real-time linkage of individual patient anti-malarial resistance profiles with their case notifications and treatment response reports, and map these to fine scales in Nkomazi sub-district, Mpumalanga, a pre-elimination area in South Africa. Results: Plasmodium falciparum molecular marker resistance profiles were linked to 55.1% (2636/4787) of notified malaria cases, 85% (2240/2636) of which were mapped to healthcare facility, ward and locality levels. Over time, linkage of individual malaria case demographic and molecular data increased to 75.1%. No artemisinin resistant validated/associated Kelch-13 mutations were detected in the 2385 PCR positive samples. Almost all 2812 samples assessed for lumefantrine susceptibility carried the wildtype mdr86ASN and crt76LYS alleles, potentially associated with decreased lumefantrine susceptibility. Conclusion: Routine near-real-time mapping of molecular markers associated with anti-malarial drug resistance on a fine spatial scale provides a rapid and efficient early warning system for emerging resistance. The lessons learnt here could inform scale-up to provincial, national and regional malaria elimination programmes, and may be relevant for other antimicrobial resistance surveillance.</br

    Using the SaTScan method to detect local malaria clusters for guiding malaria control programmes

    Get PDF
    Mpumalanga Province, South Africa is a low malaria transmission area that is subject to malaria epidemics. SaTScan methodology was used by the malaria control programme to detect local malaria clusters to assist disease control planning. The third season for case cluster identification overlapped with the first season of implementing an outbreak identification and response system in the area. SaTScan™ software using the Kulldorf method of retrospective space-time permutation and the Bernoulli purely spatial model was used to identify malaria clusters using definitively confirmed individual cases in seven towns over three malaria seasons. Following passive case reporting at health facilities during the 2002 to 2005 seasons, active case detection was carried out in the communities, this assisted with determining the probable source of infection. The distribution and statistical significance of the clusters were explored by means of Monte Carlo replication of data sets under the null hypothesis with replications greater than 999 to ensure adequate power for defining clusters. SaTScan detected five space-clusters and two space-time clusters during the study period. There was strong concordance between recognized local clustering of cases and outbreak declaration in specific towns. Both Albertsnek and Thambokulu reported malaria outbreaks in the same season as space-time clusters. This synergy may allow mutual validation of the two systems in confirming outbreaks demanding additional resources and cluster identification at local level to better target resources. Exploring the clustering of cases assisted with the planning of public health activities, including mobilizing health workers and resources. Where appropriate additional indoor residual spraying, focal larviciding and health promotion activities, were all also carried out

    The number of reported treated cases are depicted for all the municipalities in Mpumalanga Province for 2002 and 2012.

    No full text
    <p>The number of reported treated cases are depicted for all the municipalities in Mpumalanga Province for 2002 and 2012.</p

    Percentage plot of locally and foreign-sourced malaria cases in Mpumalanga Province between 2002 and 2012.

    No full text
    <p>Percentage plot of locally and foreign-sourced malaria cases in Mpumalanga Province between 2002 and 2012.</p

    Seasonal trend of monthly malaria cases in Mpumalanga and Maputo, Mozambique between 2002 and 2012.

    No full text
    <p>Seasonal trend of monthly malaria cases in Mpumalanga and Maputo, Mozambique between 2002 and 2012.</p

    The weekly and annual reported treated malaria cases in Mpumalanga Province between 2002 and 2012.

    No full text
    <p>The weekly and annual reported treated malaria cases in Mpumalanga Province between 2002 and 2012.</p

    Two year seasonal trend of reported treated malaria cases in Mpumalanga Province between 2002 and 2012.

    No full text
    <p>Two year seasonal trend of reported treated malaria cases in Mpumalanga Province between 2002 and 2012.</p

    Seasonality and trend components of an STL decomposition of locally and foreign-sourced malaria cases in Mpumalanga Province between 2002 and 2012.

    No full text
    <p>Seasonality and trend components of an STL decomposition of locally and foreign-sourced malaria cases in Mpumalanga Province between 2002 and 2012.</p
    corecore