28 research outputs found

    Effect of thrombin peptide 508 (TP508) on bone healing during distraction osteogenesis in rabbit tibia

    Get PDF
    Thrombin-related peptide 508 (TP508) accelerates bone regeneration during distraction osteogenesis (DO). We have examined the effect of TP508 on bone regeneration during DO by immunolocalization of Runx2 protein, a marker of osteoblast differentiation, and of osteopontin (OPN) and bone sialoprotein (BSP), two late markers of the osteoblast lineage. Distraction was performed in tibiae of rabbits over a period of 6 days. TP508 (30 or 300 μg) or vehicle was injected into the distraction gap at the beginning and end of the distraction period. Two weeks after active distraction, tissue samples were harvested and processed for immunohistochemical analysis. We also tested the in vitro effect of TP508 on Runx2 mRNA expression in osteoblast-like (MC3T3-E1) cells by polymerase chain reaction analysis. Runx2 and OPN protein were observed in preosteoblasts, osteoblasts, osteocytes of newly formed bone, blood vessel cells and many fibroblast-like cells of the soft connective tissue. Immunostaining for BSP was more restricted to osteoblasts and osteocytes. Significantly more Runx2- and OPN-expressing cells were seen in the group treated with 300 μg TP508 than in the control group injected with saline or with 30 μg TP508. However, TP508 failed to increase Runx2 mRNA levels significantly in MC3T3-E1 cells after 2–3 days of exposure. Our data suggest that TP508 enhances bone regeneration during DO by increasing the proportion of cells of the osteoblastic lineage. Clinically, TP508 may shorten the healing time during DO; this might be of benefit when bone regeneration is slow

    Experimental Studies

    No full text

    Periosteal Distraction Osteogenesis and Barrier Membrane Application: An Experimental Study in the Rat Calvaria

    No full text
    Background: Distraction of the periosteum results in the formation of new bone in the gap between the periosteum and the original bone. We postulate that the use of a barrier membrane would be beneficial for new bone formation in periosteal distraction. Methods: To selectively influence the contribution of the periosteum, a distraction plate with perforations was used alone or covered by a collagen barrier membrane. All animals were subjected to a 7-day latency period and a 10-day distraction period with a rate of 0.1 mm/day. Four animals per group with or without a barrier membrane were sacrificed at 2, 4, and 6 weeks after the end of the distraction. The height of new bone generated relative to the areas bound by the parent bone and the periosteum was determined by histomorphometric methods. Results: New bone was found in all groups. At the periphery of the distraction plate, significant differences in bone height were found between the hinge and the distraction screw for the group without barrier membrane at 2 weeks (0.39 ± 0.19 mm) compared to 4 weeks (0.84 ± 0.44 mm; P = 0.002) and 6 weeks (1.06 ± 0.39 mm; P = 0.004). Differences in maximum bone height with and without a barrier membrane were observed laterally to the distraction plate at 2 weeks (1.22 ± 0.64 versus 0.55 ± 0.14 mm; P = 0.019) and 6 weeks (1.61 ± 0.56 versus 0.73 ± 0.33 mm; P = 0.003) of the consolidation period. Conclusion: Within the limitations of the present study, the application of a barrier membrane may be considered beneficial for new bone formation induced by periosteal distraction
    corecore