200 research outputs found

    Sudden spreading of infections in an epidemic model with a finite seed fraction

    Full text link
    We study a simple case of the susceptible-weakened-infected-removed model in regular random graphs in a situation where an epidemic starts from a finite fraction of initially infected nodes (seeds). Previous studies have shown that, assuming a single seed, this model exhibits a kind of discontinuous transition at a certain value of infection rate. Performing Monte Carlo simulations and evaluating approximate master equations, we find that the present model has two critical infection rates for the case with a finite seed fraction. At the first critical rate the system shows a percolation transition of clusters composed of removed nodes, and at the second critical rate, which is larger than the first one, a giant cluster suddenly grows and the order parameter jumps even though it has been already rising. Numerical evaluation of the master equations shows that such sudden epidemic spreading does occur if the degree of the underlying network is large and the seed fraction is small.Comment: 9 page

    Efficiency of prompt quarantine measures on a susceptible-infected-removed model in networks

    Get PDF
    This study focuses on investigating the manner in which a prompt quarantine measure suppresses epidemics in networks. A simple and ideal quarantine measure is considered in which an individual is detected with a probability immediately after it becomes infected and the detected one and its neighbors are promptly isolated. The efficiency of this quarantine in suppressing a susceptible-infected-removed (SIR) model is tested in random graphs and uncorrelated scale-free networks. Monte Carlo simulations are used to show that the prompt quarantine measure outperforms random and acquaintance preventive vaccination schemes in terms of reducing the number of infected individuals. The epidemic threshold for the SIR model is analytically derived under the quarantine measure, and the theoretical findings indicate that prompt executions of quarantines are highly effective in containing epidemics. Even if infected individuals are detected with a very low probability, the SIR model under a prompt quarantine measure has finite epidemic thresholds in fat-tailed scale-free networks in which an infected individual can always cause an outbreak of a finite relative size without any measure. The numerical simulations also demonstrate that the present quarantine measure is effective in suppressing epidemics in real networks.Comment: 10 pages, 7 figure

    Hierarchical scale-free network is fragile against random failure

    Get PDF
    We investigate site percolation in a hierarchical scale-free network known as the Dorogovtsev- Goltsev-Mendes network. We use the generating function method to show that the percolation threshold is 1, i.e., the system is not in the percolating phase when the occupation probability is less than 1. The present result is contrasted to bond percolation in the same network of which the percolation threshold is zero. We also show that the percolation threshold of intentional attacks is 1. Our results suggest that this hierarchical scale-free network is very fragile against both random failure and intentional attacks. Such a structural defect is common in many hierarchical network models.Comment: 11 pages, 4 figure

    Critical Phase of Bond Percolations on Growing Networks

    Get PDF
    The critical phase of bond percolation on the random growing tree is examined. It is shown that the root cluster grows with the system size NN as NψN^\psi and the mean number of clusters with size ss per node follows a power function nssτn_s \propto s^{-\tau} in the whole range of open bond probability pp. The exponent τ\tau and the fractal exponent ψ\psi are also derived as a function of pp and the degree exponent γ\gamma, and are found to satisfy the scaling relation τ=1+ψ1\tau=1+\psi^{-1}. Numerical results with several network sizes are quite well fitted by a finite size scaling for a wide range of pp and γ\gamma, which gives a clear evidence for the existence of a critical phase.Comment: 5 pages, 4 figures; accepted for publication in Physical Review

    Robustness of correlated networks against propagating attacks

    Full text link
    We investigate robustness of correlated networks against propagating attacks modeled by a susceptible-infected-removed model. By Monte-Carlo simulations, we numerically determine the first critical infection rate, above which a global outbreak of disease occurs, and the second critical infection rate, above which disease disintegrates the network. Our result shows that correlated networks are robust compared to the uncorrelated ones, regardless of whether they are assortative or disassortative, when a fraction of infected nodes in an initial state is not too large. For large initial fraction, disassortative network becomes fragile while assortative network holds robustness. This behavior is related to the layered network structure inevitably generated by a rewiring procedure we adopt to realize correlated networks.Comment: 6 pages, 13 figure

    Profile and scaling of the fractal exponent of percolations in complex networks

    Full text link
    We propose a novel finite size scaling analysis for percolation transition observed in complex networks. While it is known that cooperative systems in growing networks often undergo an infinite order transition with inverted Berezinskii-Kosterlitz-Thouless singularity, it is very hard for numerical simulations to determine the transition point precisely. Since the neighbor of the ordered phase is not a simple disordered phase but a critical phase, conventional finite size scaling technique does not work. In our finite size scaling, the forms of the scaling functions for the order parameter and the fractal exponent determine the transition point and critical exponents numerically for an infinite order transition as well as a standard second order transition. We confirm the validity of our scaling hypothesis through Monte-Carlo simulations for bond percolations in some network models: the decorated (2,2)-flower and the random attachment growing network, where an infinite order transition occurs, and the configuration model, where a second order transition occurs.Comment: 6 page
    corecore