11 research outputs found

    Renal perfusion, oxygenation and metabolism: the role of imaging

    Get PDF
    Thanks to technical advances in the field of medical imaging, it is now possible to study key features of renal anatomy and physiology, but so far poorly explored due to the inherent difficulties in studying both the metabolism and vasculature of the human kidney. In this narrative review, we provide an overview of recent research findings on renal perfusion, oxygenation, and substrate uptake. Most studies evaluating renal perfusion with positron emission tomography (PET) have been performed in healthy controls, and specific target populations like obese individuals or patients with renovascular disease and chronic kidney disease (CKD) have rarely been assessed. Functional magnetic resonance (fMRI) has also been used to study renal perfusion in CKD patients, and recent studies have addressed the kidney hemodynamic effects of therapeutic agents such as glucagon-like receptor agonists (GLP-1RA) and sodium-glucose co-transporter 2 inhibitors (SGLT2-i) in an attempt to characterise the mechanisms leading to their nephroprotective effects. The few available studies on renal substrate uptake are discussed. In the near future, these imaging modalities will hopefully become widely available with researchers more acquainted with them, gaining insights into the complex renal pathophysiology in acute and chronic diseases

    The renal blood flow reserve in healthy humans and patients with atherosclerotic renovascular disease measured by positron emission tomography using [O-15]H2O

    Get PDF
    Background: Microvascular function plays an important role in ARVD (atherosclerotic renovascular disease). RFR (renal flow reserve), the capacity of renal vasculature to dilate, is known to reflect renal microvascular function. In this pilot study, we assessed PET (positron emission tomography)-based RFR values of healthy persons and renal artery stenosis patients.Seventeen patients with ARVD and eight healthy subjects were included in the study. Intravenous enalapril 1 mg was used as a vasodilatant, and the maximum response (blood pressure and RFR) to it was measured at 40 min. Renal perfusion was measured by means of oxygen-15-labeled water PET. RFR was calculated as a difference of stress flow and basal flow and was expressed as percent [(stress blood flow - basal blood flow)/basal blood flow] x 100%.Results: RFR of the healthy was 22%. RFR of the stenosed kidneys of bilateral stenosis patients (27%) was higher than that of the stenosed kidneys of unilateral stenosis patients (15%). RFR of the contralateral kidneys of unilateral stenosis patients was 21%. There was no difference of statistical significance between RFR values of ARVD subgroups or between ARVD subgroups and the healthy. In the stenosed kidneys of unilateral ARVD patients, stenosis grade of the renal artery correlated negatively with basal (p = 0.04) and stress flow (p = 0.02). Dispersion of RFR values was high.Conclusions: This study is the first to report [O-15]H2O PET-based RFR values of healthy subjects and ARVD patients in humans. The difference between RFR values of ARVD patients and the healthy did not reach statistical significance perhaps because of high dispersion of RFR values. [O-15]H2O PET is a valuable non-invasive and quantitative method to evaluate renal blood flow though high dispersion makes imaging challenging. Larger studies are needed to get more information about [O-15]H2O PET method in evaluation of renal blood flow

    Renal vascular resistance is increased in patients with kidney transplant

    Get PDF
    Background Despite improvement in short-term outcome of kidney transplants, the long-term survival of kidney transplants has not changed over past decades. Kidney biopsy is the gold standard of transplant pathology but it's invasive. Quantification of transplant blood flow could provide a novel non-invasive method to evaluate transplant pathology. The aim of this retrospective cross-sectional pilot study was to evaluate positron emission tomography (PET) as a method to measure kidney transplant perfusion and find out if there is correlation between transplant perfusion and histopathology. Methods Renal cortical perfusion of 19 kidney transplantation patients [average time from transplantation 33 (17-54) months; eGFR 55 (47-69) ml/min] and 10 healthy controls were studied by [(15) O]H2O PET. Perfusion and Doppler resistance index (RI) of transplants were compared with histology of one-year protocol transplant biopsy. Results Renal cortical perfusion of healthy control subjects and transplant patients were 2.7 (2.4-4.0) ml min(- 1) g(- 1) and 2.2 (2.0-3.0) ml min(- 1) g(- 1), respectively (p = 0.1). Renal vascular resistance (RVR) of the patients was 47.0 (36.7-51.4) mmHg mL(- 1)min(- 1)g(- 1) and that of the healthy 32.4 (24.6-39.6) mmHg mL(- 1)min(-1)g(-1) (p = 0.01). There was a statistically significant correlation between Doppler RI and perfusion of transplants (r = - 0.51, p = 0.026). Transplant Doppler RI of the group of mild fibrotic changes [0.73 (0.70-0.76)] and the group of no fibrotic changes [0.66 (0.61-0.72)] differed statistically significantly (p = 0.03). No statistically significant correlation was found between cortical perfusion and fibrosis of transplants (p = 0.56). Conclusions [(15) O]H2O PET showed its capability as a method in measuring perfusion of kidney transplants. RVR of transplant patients with stage 2-3 chronic kidney disease was higher than that of the healthy, although kidney perfusion values didn't differ between the groups. Doppler based RI correlated with perfusion and fibrosis of transplants

    Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): Study protocol

    Get PDF
    Background: Diabetic kidney disease (DKD) remains one of the leading causes of premature death in diabetes. DKD is classified on albuminuria and reduced kidney function (estimated glomerular filtration rate (eGFR)) but these have modest value for predicting future renal status. There is an unmet need for biomarkers that can be used in clinical settings which also improve prediction of renal decline on top of routinely available data, particularly in the early stages. The iBEAt study of the BEAt-DKD project aims to determine whether renal imaging biomarkers (magnetic resonance imaging (MRI) and ultrasound (US)) provide insight into the pathogenesis and heterogeneity of DKD (primary aim) and whether they have potential as prognostic biomarkers in DKD (secondary aim). Methods: iBEAt is a prospective multi-centre observational cohort study recruiting 500 patients with type 2 diabetes (T2D) and eGFR ≥30 ml/min/1.73m2. At baseline, blood and urine will be collected, clinical examinations will be performed, and medical history will be obtained. These assessments will be repeated annually for 3 years. At baseline each participant will also undergo quantitative renal MRI and US with central processing of MRI images. Biological samples will be stored in a central laboratory for biomarker and validation studies, and data in a central data depository. Data analysis will explore the potential associations between imaging biomarkers and renal function, and whether the imaging biomarkers improve the prediction of DKD progression. Ancillary substudies will: (1) validate imaging biomarkers against renal histopathology; (2) validate MRI based renal blood flow measurements against H2O15 positron-emission tomography (PET); (3) validate methods for (semi-)automated processing of renal MRI; (4) examine longitudinal changes in imaging biomarkers; (5) examine whether glycocalyx and microvascular measures are associated with imaging biomarkers and eGFR decline; (6) explore whether the findings in T2D can be extrapolated to type 1 diabetes. Discussion: iBEAt is the largest DKD imaging study to date and will provide valuable insights into the progression and heterogeneity of DKD. The results may contribute to a more personalised approach to DKD management in patients with T2D. Trial registration: Clinicaltrials.gov (NCT03716401)

    Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): study protocol

    Get PDF
    Background: Diabetic kidney disease (DKD) remains one of the leading causes of premature death in diabetes. DKD is classified on albuminuria and reduced kidney function (estimated glomerular filtration rate (eGFR)) but these have modest value for predicting future renal status. There is an unmet need for biomarkers that can be used in clinical settings which also improve prediction of renal decline on top of routinely available data, particularly in the early stages. The iBEAt study of the BEAt-DKD project aims to determine whether renal imaging biomarkers (magnetic resonance imaging (MRI) and ultrasound (US)) provide insight into the pathogenesis and heterogeneity of DKD (primary aim) and whether they have potential as prognostic biomarkers in DKD (secondary aim). Methods: iBEAt is a prospective multi-centre observational cohort study recruiting 500 patients with type 2 diabetes (T2D) and eGFR >= 30 ml/min/1.73m(2). At baseline, blood and urine will be collected, clinical examinations will be performed, and medical history will be obtained. These assessments will be repeated annually for 3 years. At baseline each participant will also undergo quantitative renal MRI and US with central processing of MRI images. Biological samples will be stored in a central laboratory for biomarker and validation studies, and data in a central data depository. Data analysis will explore the potential associations between imaging biomarkers and renal function, and whether the imaging biomarkers improve the prediction of DKD progression. Ancillary substudies will: (1) validate imaging biomarkers against renal histopathology; (2) validate MRI based renal blood flow measurements against H2O15 positron-emission tomography (PET); (3) validate methods for (semi-)automated processing of renal MRI; (4) examine longitudinal changes in imaging biomarkers; (5) examine whether glycocalyx and microvascular measures are associated with imaging biomarkers and eGFR decline; (6) explore whether the findings in T2D can be extrapolated to type 1 diabetes. Discussion: iBEAt is the largest DKD imaging study to date and will provide valuable insights into the progression and heterogeneity of DKD. The results may contribute to a more personalised approach to DKD management in patients with T2D.</div

    Common Inflammation-Related Candidate Gene Variants and Acute Kidney Injury in 2647 Critically Ill Finnish Patients

    Get PDF
    Acute kidney injury (AKI) is a syndrome with high incidence among the critically ill. Because the clinical variables and currently used biomarkers have failed to predict the individual susceptibility to AKI, candidate gene variants for the trait have been studied. Studies about genetic predisposition to AKI have been mainly underpowered and of moderate quality. We report the association study of 27 genetic variants in a cohort of Finnish critically ill patients, focusing on the replication of associations detected with variants in genes related to inflammation, cell survival, or circulation. In this prospective, observational Finnish Acute Kidney Injury (FINNAKI) study, 2647 patients without chronic kidney disease were genotyped. We defined AKI according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria. We compared severe AKI (Stages 2 and 3, n = 625) to controls (Stage 0, n = 1582). For genotyping we used iPLEX(TM) Assay (Agena Bioscience). We performed the association analyses with PLINK software, using an additive genetic model in logistic regression. Despite the numerous, although contradictory, studies about association between polymorphisms rs1800629 in TNFA and rs1800896 in IL10 and AKI, we found no association (odds ratios 1.06 (95% CI 0.89-1.28, p = 0.51) and 0.92 (95% CI 0.80-1.05, p = 0.20), respectively). Adjusting for confounders did not change the results. To conclude, we could not confirm the associations reported in previous studies in a cohort of critically ill patients
    corecore