2,882 research outputs found
muSR study of the Cu-spin dynamics in the electron-doped high-Tc cuprate of Pr0.86LaCe0.14Cu1-y(Zn,Ni)yO4
Effects of the Zn- and Ni-substitution on the Cu-spin dynamics in the
electron-doped Pr0.86LaCe0.14Cu1-y(Zn,Ni)yO4+a-d with y = 0, 0.01, 0.02, 0.05
and different values of the reduced oxygen content d have been studied using
zero-field muon-spin-relaxation (muSR) measurements at temperatures down to 2
K. For the as-grown sample (d = 0, y = 0) and the sample with a very small d
value (d < 0.01, y = 0), a muon-spin precession due to long-range
antiferromagnetic order has been observed. On the other hand, no precession has
been observed for moderately oxygen-reduced samples (0.01 < d < 0.09). It has
been found that for all the samples of 0.01 < d < 0.09 the asymmetry A(t) (muSR
time spectrum) in the long-time region increases with decreasing temperature at
low temperatures, suggesting possible slowing-down of the Cu-spin fluctuations.
On the other hand, no significant difference between Zn- and Ni-substitution
effects on the slowing down of the Cu-spin fluctuations has been observed.Comment: 4 pages, 2 figures, Proceeding of 10th muSR conference 2005, to be
published in Physica
Absence of the impurity-induced magnetic order in the electron-doped high-T_c_ cuprates Pr_0.86_LaCe_0.14_Cu_1-y_(Zn, Ni)_y_O_4_
Zero-field muon-spin-relaxation measurements have been carried out in order
to investigate the Zn- and Ni-substitution effects on the Cu-spin dynamics in
the electron-doped Pr_0.86_LaCe_0.14_Cu_1-y_(Zn, Ni)_y_O_4+\alpa-\delta_ with y
= 0, 0.01, 0.02, 0.05 and different values of the reduced oxygen content
\delta(\delta \le 0.09). For the samples with y = 0 and very small \delta
values of \delta < 0.01, a muon-spin precession due to the formation of a
long-range antiferromagnetic order has been observed at low temperatures below
\~ 5 K. For the moderately oxygen-reduced samples of 0.01 \le \delta \le 0.09,
on the contrary, no muon-spin precession has been observed and the temperature
dependence of the spectra is similar to one another regardless of the y value.
That is, no impurity-induced slowing down of the Cu-spin fluctuations has been
detected, which is very different from the results of the hole-doped high-T_c_
cuprates. The reason is discussed.Comment: 13 pages, 2 figures, Proceedings of ISS2004 (to be published in
Physica C
Muon-spin-relaxation and magnetic-susceptibility studies of effects of the magnetic impurity Ni on the Cu-spin dynamics and superconductivity in La_2-x_Sr_x_Cu_1-y_Ni_y_O_4_ with x = 0.13
Effects of the magnetic impurity Ni on the Cu-spin dynamics and
superconductivity have been studied in La_2-x_Sr_x_Cu_1-y_Ni_y_O_4_ with x =
0.13 changing y finely up to 0.10. Compared with the case of the nonmagnetic
impurity Zn, it has been found from the muon-spin-relaxation measurements that
a large amount of Ni is required to stabilize a magnetic order of Cu spins.
However, the evolution toward the stabilization of the magnetic order with
increasing impurity concentration is qualitatively similar to each other. The
area of the non-superconducting and slowly fluctuating or static region of Cu
spins around Ni has been found to be smaller than that around Zn, suggesting
that the pinning of rather long-ranged dynamical spin correlation such as the
so-called dynamical stripe by Ni is weaker than that by Zn. This may be the
reason why Zn destroys the superconductivity in the hole-doped high-T_c_
cuprates more markedly than Ni.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev.
Strings in five-dimensional anti-de Sitter space with a symmetry
The equation of motion of an extended object in spacetime reduces to an
ordinary differential equation in the presence of symmetry. By properly
defining of the symmetry with notion of cohomogeneity, we discuss the method
for classifying all these extended objects. We carry out the classification for
the strings in the five-dimensional anti-de Sitter space by the effective use
of the local isomorphism between \SO(4,2) and \SU(2,2). We present a
general method for solving the trajectory of the Nambu-Goto string and apply to
a case obtained by the classification, thereby find a new solution which has
properties unique to odd-dimensional anti-de Sitter spaces. The geometry of the
solution is analized and found to be a timelike helicoid-like surface
Cu-spin dynamics in the overdoped regime of La_2-x_Sr_x_Cu_1-y_Zn_y_O_4_ probed by muon spin relaxation
Muon-spin-relaxation measurements have been performed for the partially
Zn-substituted La_2-x_Sr_x_Cu_1-y_Zn_y_O_4_ with y=0-0.10 in the overdoped
regime up to x=0.30. In the 3 % Zn-substituted samples up to x=0.27,
exponential-like depolarization of muon spins has been observed at low
temperatures, indicating Zn-induced slowing-down of the Cu-spin fluctuations.
The depolarization rate decreases with increasing x and almost no fast
depolarization of muon spins has been observed for x=0.30 where
superconductivity disappears. The present results suggest that the dynamical
stripe correlations exist in the whole superconducting regime of
La_2-x_Sr_x_CuO_4_ and that there is no quantum critical point at x~0.19.Comment: 6 pages, 5 figure
Polarization Effects in Chargino Production at High Energy Colliders
We investigate the chargino production process
at high energy
colliders in the framework of the minimal supersymmetric
standard model (MSSM). Here the high energy beams are obtained by the
backward Compton scattering of the laser flush by the electron in the basic
linear TeV colliders. We consider the polarization of the laser photons as
well as the electron beams. Appropriate beam polarization could be effective to
enhance the cross section and for us to extract the signal from the dominant
background .Comment: 7 pages, latex , 3 figures are available upon reques
Development of Cu-spin correlation in Bi_1.74_Pb_0.38_Sr_1.88_Cu_1-y_Zn_y_O_6+d_ high-temperature superconductors observed by muon spin relaxation
A systematic muon-spin-relaxation study in Bi-2201 high-Tc cuprates has
revealed for the first time that the Cu-spin correlation (CSC) is developed at
low temperatures below 2 K in a wide range of hole concentration where
superconductivity appears. The CSC tends to become weak gradually with
increasing hole-concentration. Moreover, CSC has been enhanced through the 3%
substitution of Zn for Cu. These results are quite similar to those observed in
La-214 high-Tc cuprates. Accordingly, it has been suggested that the intimate
relation between the so-called spin-charge stripe correlations and
superconductivity is a universal feature in hole-doped high-Tc cuprates.
Furthermore, apparent development of CSC, which is suppressed through the Zn
substitution oppositely, has been observed in non-superconducting heavily
overdoped samples, being argued in the context of a recently proposed
ferromagnetic state in heavily overdoped cuprates.Comment: 6 pages, 5 figure
Hole-trapping by Ni, Kondo effect and electronic phase diagram in non-superconducting Ni-substituted La2-xSrxCu1-yNiyO4
In order to investigate the electronic state in the normal state of high-Tc
cuprates in a wide range of temperature and hole-concentration, specific-heat,
electrical-resistivity, magnetization and muon-spin-relaxation (muSR)
measurements have been performed in non-superconducting Ni-substituted
La2-xSrxCu1-yNiyO4 where the superconductivity is suppressed through the
partial substitution of Ni for Cu without disturbing the Cu-spin correlation in
the CuO2 plane so much. In the underdoped regime, it has been found that there
exist both weakly localized holes around Ni and itinerant holes at high
temperatures. With decreasing temperature, all holes tend to be localized,
followed by the occurrence of variable-range hopping conduction at low
temperatures. Finally, in the ground state, it has been found that each Ni2+
ion traps a hole strongly and that a magnetically ordered state appears. In the
overdoped regime, on the other hand, it has been found that a Kondo-like state
is formed around each Ni2+ spin at low temperatures. In conclusion, the ground
state of non-superconducting La2-xSrxCu1-yNiyO4 changes upon hole doping from a
magnetically ordered state with the strong hole-trapping by Ni2+ to a metallic
state with Kondo-like behavior due to Ni2+ spins, and the quantum phase
transition is crossover-like due to the phase separation into short-range
magnetically ordered and metallic regions.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.
- …