67 research outputs found

    Eradication of Hepatitis C Virus Subgenomic Replicon by Interferon Results in Aberrant Retinol-Related Protein Expression

    Get PDF
    Hepatitis C virus (HCV) infection induces several changes in hepatocytes, such as oxidative stress, steatosis, and hepatocarcinogenesis. Although considerable progress has been made during recent years, the mechanisms underlying these functions remain unclear. We employed proteomic techniques in HCV replicon-harboring cells to determine the effects of HCV replication on host-cell protein expression. We examined two-dimensional electrophoresis (2-DE) and mass spectrometry to compare and identify differentially expressed proteins between HCV subgenomic replicon-harboring cells and their “cured” cells. One of the identified proteins was confirmed using enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. Full-length HCV genome RNA replicating and cured cells were also assessed using ELISA. Replicon-harboring cells showed higher expression of retinal dehydrogenase 1 (RALDH-1), which converts retinol to retinoic acid, and the cured cells showed higher expression of retinol-binding protein (RBP), which transports retinol from the liver to target tissues. The alteration in RBP expression was also confirmed by ELISA and Western blot analysis. We conclude that protein expression profiling demonstrated that HCV replicon eradication affected retinol-related protein expression

    Hepatitis B virus core promoter mutations G1613A and C1653T are significantly associated with hepatocellular carcinoma in genotype C HBV-infected patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis B virus (HBV) is a major cause of hepatocarcinogenesis.</p> <p>To identify mutations relevant to hepatocellular carcinoma (HCC) development, we compared the full genome sequences of HBV from the sera of patients with and without HCC.</p> <p>Methods</p> <p>We compared the full genome sequences of HBV isolates from 37 HCC patients (HCC group 1) and 38 patients without HCC (non-HCC group 1). We also investigated part of the core promoter region sequences from 40 HCC patients (HCC group 2) and 68 patients without HCC. Of the 68 patients who initially did not have HCC, 52 patients remained HCC-free during the follow-up period (non-HCC group 2), and 16 patients eventually developed HCC (pre-HCC group 2). Serum samples collected from patients were subjected to PCR, and the HBV DNA was directly sequenced.</p> <p>Results</p> <p>All patients had genotype C. A comparison of the nucleotide sequences of the HBV genome between HCC group 1 and non-HCC group 1 revealed that the prevalence of G1613A and C1653T mutations in the core promoter region was significantly higher in the HCC group. These mutations tended to occur simultaneously in HCC patients. Multivariate analysis with group 2 revealed that the presence of HCC was associated with aging and the double mutation. Future emergence of HCC was associated with aging and the presence of a single G1613A mutation.</p> <p>Conclusions</p> <p>G1613A and C1653T double mutations were frequently found in patients with HCC. A single G1613A mutation was associated with future emergence of HCC. These mutations may serve as useful markers in predicting HCC development.</p

    L-Carnitine Prevents Progression of Non-Alcoholic Steatohepatitis in a Mouse Model with Upregulation of Mitochondrial Pathway

    Get PDF
    Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease characterized by lobular inflammation, hepatocellular ballooning, and fibrosis with an inherent risk for progression to cirrhosis and hepatocellular carcinoma (HCC). Mitochondrial dysfunction appears to play a role in the progression from simple steatosis to NASH. L-carnitine (L-b-hydroxy-g-N-trimethylaminobutyric acid), an essential nutrient that converts fat into energy in mitochondria, has been shown to ameliorate liver damage. The aim of the present study was to explore the preventive and therapeutic effect of L-carnitine in NASH model mice. Eight-week-old male STAM mice, a NASH-cirrhosis-hepatocarcinogenic model, were divided into 3 experimental groups and fed as follows: 1) high-fat diet (HFD) (control group); 2) HFD mixed with 0.28% L-carnitine (L-carnitine group); and 3) HFD mixed with 0.01% alpha-tocopherol (alpha-tocopherol group). After 4 or 8 weeks, mice were sacrificed. Blood samples and livers were collected, and hepatic tumors were counted and measured. Livers were subjected to histological study, immunohistochemical staining of 4-hydroxynonenal and ferritin, determination of 8-OHdG levels, mRNA and protein expressions for multiple genes, and metabolomic analysis. The intestinal microbiome was also analyzed. L-carnitine increased hepatic expression of genes related to long-chain fatty acid transport, mitochondrial beta-oxidation, and antioxidant enzymes following suppression of hepatic oxidative stress markers and inflammatory cytokines in NASH, and mice treated with L-carnitine developed fewer liver tumors. Although alpha-tocopherol resulted in NASH improvement in the same manner as L-carnitine, it increased periodontitis-related microbiotic changes and hepatic iron transport-related gene expression and led to less effective for anti-hepatocarcinogenesis. Conclusion: L-carnitine prevents progression of non-alcoholic steatohepatitis in a mouse model by upregulating the mitochondrial beta-oxidation and redox system

    Hepatitis C Virus-specific T-cell Response Correlates with Hepatitis Activity and Donor IL28B Genotype Early after Liver Transplantation

    Get PDF
    It is not known how the immune system targets hepatitis C virus (HCV)-infected HLA-mismatched hepatocytes under immune-suppressed conditions after orthotopic liver transplantation (OLT). In addition, the relationship between the HCV-specific immune response and IL28B variants as predictors of HCV clearance has not been well-characterized. We determined the IL28B polymorphisms for 57 post-OLT HCV carriers, and we assessed the HCV-specific immune responses by measuring the peripheral blood mononuclear cell-derived HCV-specific interferon-gamma (IFN-γ) response using an enzyme-linked immunospot assay. At 1-3 years after OLT, patients with no active hepatitis showed higher total spots on the immunospot assay. At>3 years after OLT, patients with resolved HCV showed higher levels of core, NS3, NS5A, and total spots compared to the chronic hepatitis patients. The IL28B major genotype in the donors correlated with higher spot counts for NS5A and NS5B proteins at 1-3 years after OLT. In the post-OLT setting, the HCV-specific immune response could be strongly induced in patients with no active hepatitis with an IL28B major donor or sustained virological response. Strong immune responses in the patients with no active hepatitis could only be maintained for 3 years and diminished later. It may be beneficial to administer IFN treatment starting 3 years after OLT, to induce the maximum immunological effect

    外国人児童生徒のことばの力を見取る共通指標 「日本語ステップ」の開発

    Get PDF
    平成26年4月から小中学校において日本語指導が必要な児童生徒を対象に「特別の教育課程」を編 成・実施することが可能になった。今後は、教員が児童生徒の個別の指導計画を作成し、ことばの発 達段階に応じた指導・支援を行うことが求められる。群馬県伊勢崎市では「特別の教育課程」の実施 に先立ち、市の教育研究所内に教員6名の日本語教育研究班が組織され、日本語指導の充実のための 実践研究が行われている。日本語教育研究班では日本語能力測定に関する先行研究の知見を参考に、 子どものことばの発達の様子を見取る共通指標「日本語ステップ」を開発した。これは児童生徒の日 本語指導に関わる複数の指導者が子どものことばの発達の様子を観察・把握し、個別の指導計画につ いて話し合うためのツールとして使用するものである。本稿では、日本語ステップの開発目的とその 特徴3点、および今後の活用の可能性について述べる

    Serum Levels of Soluble Adhesion Molecules as Prognostic Factors for Acute Liver Failure

    Get PDF
    Background/Aims: In patients with septic shock, the degree of liver dysfunction is correlated with serum levels of soluble intercellular adhesion molecule (sICAM)-1. We aimed to assess the usefulness of serum levels of soluble adhesion molecules as prognostic factors for acute liver failure (ALF). Methods: Serum levels of soluble platelet endothelial cell adhesion molecule (sPECAM)-1, sICAM-3, soluble endothelial (sE) selectin, sICAM-1, soluble platelet selectin, and soluble vascular cell adhesion molecule-1 on admission were measured in 37 ALF patients and 34 healthy controls. Results: Twenty-two ALF patients (59%) reached to fatal outcomes. Serum levels of sPECAM-1, sICAM-3, sE-selectin and sICAM-1 were higher in ALF patients than healthy controls. In 37 ALF patients, by the multivariate logistic regression analysis, ratio of direct to total bilirubin (per 0.1 increase; OR 0.11, 95% CI 0.01-0.99), serum sPECAM-1 level (per 100 ng/ml increase; OR 4.37, 95% CI 1.23-15.5) and serum sICAM-1 level (per 100 ng/ml increase; OR 0.49, 95% CI 0.27-0.89) were associated with fatal outcomes. Using receiver operating characteristics curve, each area under the curve of serum sPECAM-1 and sICMA-1 levels as prognostic factors was 0.71 and 0.74, respectively. Conclusion: Serum sPECAM-1 and sICAM-1 levels may be useful for predicting the prognosis of ALF

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore