992 research outputs found

    Ferromagnetism of two-flavor quark matter in chiral and/or color-superconducting phases at zero and finite temperatures

    Full text link
    We study the phase structure of the unpolarized and polarized two-flavor quark matters at zero and finite temperatures within the Nambu--Jona-Lasinio (NJL) model. We focus on the region, which includes the coexisting phase of quark-antiquark and diquark condensates. Generalizing the NJL model so as to describe the polarized quark matter, we compute the thermodynamic potential as a function of the quark chemical potential (μ\mu), the temperature (TT), and the polarization parameter. The result heavily depends on the ratio GD/GSG_D / G_S, where GSG_S is the quark-antiquark coupling constant and GDG_D is the diquark coupling constant. We find that, for small GD/GSG_D / G_S, the "ferromagnetic" phase is energetically favored over the "paramagnetic" phase. On the other hand, for large GD/GSG_D / G_S, there appears the window in the (μ,T\mu, T)-plane, in which the "paramagnetic" phase is favored.Comment: 25 pages, 10 figure

    Cancellation of energy-divergences and renormalizability in Coulomb gauge QCD within the Lagrangian formalism

    Get PDF
    In Coulomb gauge QCD in the Lagrangian formalism, energy divergences arise in individual diagrams. We give a proof on cancellation of these divergences to all orders of perturbation theory without obstructing the algebraic renormalizability of the theory.Comment: 13 pages, 7 figure

    Phase diagram of Nambu-Jona-Lasinio model with dimensional regularization

    Full text link
    We investigate the phase diagram on temperature-chemical potential plane in the Nambu-Jona-Lasinio model with the dimensional regularization. While the structure of the resulting diagram shows resemblance to the one in the frequently used cutoff regularization, some results of our study indicate striking difference between these regularizations. The diagram in the dimensional regularization exhibits strong tendency of the first order phase transition.Comment: 9 pages, 9 figure

    Conservation Laws in Cellular Automata

    Full text link
    If X is a discrete abelian group and B a finite set, then a cellular automaton (CA) is a continuous map F:B^X-->B^X that commutes with all X-shifts. If g is a real-valued function on B, then, for any b in B^X, we define G(b) to be the sum over all x in X of g(b_x) (if finite). We say g is `conserved' by F if G is constant under the action of F. We characterize such `conservation laws' in several ways, deriving both theoretical consequences and practical tests, and provide a method for constructing all one-dimensional CA exhibiting a given conservation law.Comment: 19 pages, LaTeX 2E with one (1) Encapsulated PostScript figure. To appear in Nonlinearity. (v2) minor changes/corrections; new references added to bibliograph

    A New Galactic Extinction Map of the Cygnus Region

    Full text link
    We have made a Galactic extinction map of the Cygnus region with 5' spatial resolution. The selected area is 80^\circ to 90^\circ in the Galactic longitude and -4^\circ to 8^\circ in the Galactic latitude. The intensity at 140 \mum is derived from the intensities at 60 and 100 \mum of the IRAS data using the tight correlation between 60, 100, and 140 \mum found in the Galactic plane. The dust temperature and optical depth are calculated with 5' resolution from the 140 and 100 \mum intensity, and Av is calculated from the optical depth. In the selected area, the mean dust temperature is 17 K, the minimum is 16 K, and the maximum is 30 K. The mean Av is 6.5 mag, the minimum is 0.5 mag, and the maximum is 11 mag. The dust temperature distribution shows significant spatial variation on smaller scales down to 5'. Because the present study can trace the 5'-scale spatial variation of the extinction, it has an advantage over the previous studies, such as the one by Schlegel, Finkbeiner, & Davis, who used the COBE/DIRBE data to derive the dust temperature distribution with a spatial resolution of 1^\circ. The difference of Av between our map and Schlegel et al.'s is \pm 3 mag. A new extinction map of the entire sky can be produced by applying the present method.Comment: 27 pages, 14 figures, accepted for publication in Ap

    Distribusi Vertikal Dan Horizontal Asplenium Nidus L. Di Taman Nasional Gunung Halimun, Jawa Barat [Vertical and Horizontal Distributions of Asplenium Nidus L. in Gunung Halimun National Park, West Java]

    Full text link
    The study was carried out on August 2000 to July 2001, in 1-ha permanent plot, near Cikaniki Research Station, in Halimun Mountain National Park, West Java.The results shows that, from 1 ha (100 sub plots, each 10x10 m size) studied there were 388 individual numbers of Asplenium nidus L. with some variation on rosette leaves size. The individual numbers of A. nidus were greater at host plant stem with diameter class distribution between 1.3-9.9 cm (45,6%), and than percentages value were decreased in the larger of host plant stem diameter class. Also the individual numbers of A. nidus were greater at under 5 m height position above ground, that is 252 (65,1%).There were no correlation between host plant height (tree trunk height) and A. nidus height position above ground.However there were little linear correlation between rosette leaves size with stem diameter of host plant(Y=1.5586x+317.37 and R =0.0211), and little linear correlation between rosette leaves size with host plant height(Y=2.8241x+304.63, and R =0.0226), but there were no significant increased for both. It was assumed the effects of microclimate(temperature, humidity, light, and rainfall) to distribution of A. nidus as well as horizontal or vertical distribution

    A Multiscale Approach to Determination of Thermal Properties and Changes in Free Energy: Application to Reconstruction of Dislocations in Silicon

    Full text link
    We introduce an approach to exploit the existence of multiple levels of description of a physical system to radically accelerate the determination of thermodynamic quantities. We first give a proof of principle of the method using two empirical interatomic potential functions. We then apply the technique to feed information from an interatomic potential into otherwise inaccessible quantum mechanical tight-binding calculations of the reconstruction of partial dislocations in silicon at finite temperature. With this approach, comprehensive ab initio studies at finite temperature will now be possible.Comment: 5 pages, 3 figure
    corecore