14 research outputs found

    Median eminence myelin continuously turns over in adult mice

    Get PDF
    OBJECTIVE: Oligodendrocyte progenitor cell differentiation is regulated by nutritional signals in the adult median eminence (ME), but the consequences on local myelination are unknown. The aim of this study was to characterize myelin plasticity in the ME of adult mice in health or in response to chronic nutritional challenge and determine its relevance to the regulation of energy balance. METHODS: We assessed new oligodendrocyte (OL) and myelin generation and stability in the ME of healthy adult male mice using bromodeoxyuridine labelling and genetic fate mapping tools. We evaluated the contribution of microglia to ME myelin plasticity in PLX5622-treated C57BL/6J mice and in Pdgfra-Cre/ERT2;R26R-eYFP;Myrffl/fl mice, where adult oligodendrogenesis is blunted. Next, we investigated how high-fat feeding or caloric restriction impact ME OL lineage progression and myelination. Finally, we characterized the functional relevance of adult oligodendrogenesis on energy balance regulation. RESULTS: We show that myelinating OLs are continuously and rapidly generated in the adult ME. Paradoxically, OL number and myelin amounts remain remarkably stable in the adult ME. In fact, the high rate of new OL and myelin generation in the ME is offset by continuous turnover of both. We show that microglia are required for continuous OL and myelin production, and that ME myelin plasticity regulates the recruitment of local immune cells. Finally, we provide evidence that ME myelination is regulated by the body's energetic status and demonstrate that ME OL and myelin plasticity are required for the regulation of energy balance and hypothalamic leptin sensitivity. CONCLUSIONS: This study identifies a new mechanism modulating leptin sensitivity and the central control of energy balance and uncovers a previously unappreciated form of structural plasticity in the ME

    Epistasis between IL1A, IL1B, TNF, HTR2A, 5-HTTLPR and TPH2 Variations Does Not Impact Alcohol Dependence Disorder Features

    Get PDF
    We assessed a set of biological (HDL, LDL, SGOT, SGPT, GGT, HTc, Hb and T levels) and psychometric variables (investigated through HAM-D, HAM-A, GAS, Liebowitz Social Anxiety Scale, Mark & Mathews Scale, Leyton scale, and Pilowski scale) in a sample of 64 alcohol dependent patients, at baseline and after a detoxification treatment. Moreover, we recruited 47 non-consanguineous relatives who did not suffer alcohol related disorders and underwent the same tests. In both groups we genotyped 11 genetic variations (rs1800587; rs3087258; rs1799724; 5-HTTLPR; rs1386493; rs1386494; rs1487275; rs1843809; rs4570625; rs2129575; rs6313) located in genes whose impact on alcohol related behaviors and disorders has been hypothesized (IL1A, IL1B, TNF, 5-HTTLPR, TPH2 and HTR2A). We analyzed the epistasis of these genetic variations upon the biological and psychological dimensions in the cases and their relatives. Further on, we analyzed the effects of the combined genetic variations on the short – term detoxification treatment efficacy. Finally, being the only not yet investigated variation within this sample, we analyzed the impact of the rs6313 alone on baseline assessment and treatment efficacy. We detected the following results: the couple rs6313 + rs2129575 affected the Leyton -Trait at admission (p = 0.01) (obsessive-compulsive trait), whilst rs1800587 + 5-HTTLPR impacted the Pilowski test at admission (p = 0.01) (hypochondriac symptoms). These results did not survive Bonferroni correction (p ≤ 0.004). This lack of association may depend on the incomplete gene coverage or on the small sample size which limited the power of the study. On the other hand, it may reflect a substantial absence of relevance of the genotype variants toward the alcohol related investigated dimensions. Nonetheless, the marginal significance we detected could witness an informative correlation worth investigating in larger samples
    corecore