7,529 research outputs found

    Density-functionals not based on the electron gas: Local-density approximation for a Luttinger liquid

    Full text link
    By shifting the reference system for the local-density approximation (LDA) from the electron gas to other model systems one obtains a new class of density functionals, which by design account for the correlations present in the chosen reference system. This strategy is illustrated by constructing an explicit LDA for the one-dimensional Hubbard model. While the traditional {\it ab initio} LDA is based on a Fermi liquid (the electron gas), this one is based on a Luttinger liquid. First applications to inhomogeneous Hubbard models, including one containing a localized impurity, are reported.Comment: 4 pages, 4 figures (final version, contains additional applications and discussion; accepted by Phys. Rev. Lett.

    Is there Ornstein-Zernike equation in the canonical ensemble?

    Full text link
    A general density-functional formalism using an extended variable-space is presented for classical fluids in the canonical ensemble (CE). An exact equation is derived that plays the role of the Ornstein-Zernike (OZ) equation in the grand canonical ensemble (GCE). When applied to the ideal gas we obtain the exact result for the total correlation function h_N. For a homogeneous fluid with N particles the new equation only differs from OZ by 1/N and it allows to obtain an approximate expression for h_N in terms of its GCE counterpart that agrees with the expansion of h_N in powers of 1/N.Comment: 5 pages, RevTeX. Submitted to Phys. Rev. Let

    Symmetry of the Atomic Electron Density in Hartree, Hartree-Fock, and Density Functional Theory

    Full text link
    The density of an atom in a state of well-defined angular momentum has a specific finite spherical harmonic content, without and with interactions. Approximate single-particle schemes, such as the Hartree, Hartree-Fock, and Local Density Approximations, generally violate this feature. We analyze, by means of perturbation theory, the degree of this violation and show that it is small. The correct symmetry of the density can be assured by a constrained-search formulation without significantly altering the calculated energies. We compare our procedure to the (different) common practice of spherically averaging the self-consistent potential. Kohn-Sham density functional theory with the exact exchange-correlation potential has the correct finite spherical harmonic content in its density; but the corresponding exact single particle potential and wavefunctions contain an infinite number of spherical harmonics.Comment: 11 pages, 6 figures. Expanded discussion of spherical harmonic expansion of Hartree density. Some typos corrected, references adde

    Reconstitution of T cell receptor signaling in ZAP-70-deficient cells by retroviral transduction of the ZAP-70 gene.

    Get PDF
    A variant of severe combined immunodeficiency syndrome (SCID) with a selective inability to produce CD8 single positive T cells and a signal transduction defect in peripheral CD4+ cells has recently been shown to be the result of mutations in the ZAP-70 gene. T cell receptor (TCR) signaling requires the association of the ZAP-70 protein tyrosine kinase with the TCR complex. Human T cell leukemia virus type I-transformed CD4+ T cell lines were established from ZAP-70-deficient patients and normal controls. ZAP-70 was expressed and appropriately phosphorylated in normal T cell lines after TCR engagement, but was not detected in T cell lines from ZAP-70-deficient patients. To determine whether signaling could be reconstituted, wild-type ZAP-70 was introduced into deficient cells with a ZAP-70 retroviral vector. High titer producer clones expressing ZAP-70 were generated in the Gibbon ape leukemia virus packaging line PG13. After transduction, ZAP-70 was detected at levels equivalent to those observed in normal cells, and was appropriately phosphorylated on tyrosine after receptor engagement. The kinase activity of ZAP-70 in the reconstituted cells was also appropriately upregulated by receptor aggregation. Moreover, normal and transduced cells, but not ZAP-70-deficient cells, were able to mobilize calcium after receptor ligation, indicating that proximal TCR signaling was reconstituted. These results indicate that this form of SCID may be corrected by gene therapy

    Ab initio Study of Misfit Dislocations at the SiC/Si(001) Interface

    Full text link
    The high lattice mismatched SiC/Si(001) interface was investigated by means of combined classical and ab initio molecular dynamics. Among the several configurations analyzed, a dislocation network pinned at the interface was found to be the most efficient mechanism for strain relief. A detailed description of the dislocation core is given, and the related electronic properties are discussed for the most stable geometry: we found interface states localized in the gap that may be a source of failure of electronic devices

    Spectral signatures of the BCS-BEC crossover in the excitonic insulator phase of the extended Falicov-Kimball model

    Full text link
    We explore the spontaneous formation of an excitonic insulator state at the semimetal-semiconductor transition of mixed-valence materials in the framework of the spinless Falicov-Kimball model with direct ff-ff electron hopping. Adapting the projector-based renormalization method, we obtain a set of renormalization differential equations for the extended Falicov-Kimball model parameters and finally derive analytical expressions for the order parameter, as well as for the renormalized cc- and ff-electron dispersions, momentum distributions, and wave-vector resolved single-particle spectral functions. Our numerical results proved the valence transition picture, related to the appearance of the excitonic insulator phase, in the case of overlapping cc and ff bands. Thereby the photoemission spectra show significant differences between the weak-to-intermediate and intermediate-to-strong Coulomb attraction regimes, indicating a BCS-BEC transition of the excitonic condensate.Comment: final version, minor corrections in the text, references update

    Quantum-Mechanical Position Operator and Localization in Extended Systems

    Full text link
    We introduce a fundamental complex quantity, zLz_{L}, which allows us to discriminate between a conducting and non-conducting thermodynamic phase in extended quantum systems. Its phase can be related to the expectation value of the position operator, while its modulus provides an appropriate definition of a localization length. The expressions are valid for {\it any} fractional particle filling. As an illustration we use zLz_{L} to characterize insulator to ``superconducting'' and Mott transitions in one-dimensional lattice models with infinite on-site Coulomb repulsion at quarter filling.Comment: 4 pages, REVTEX, 1 ps figure

    Nuclear magnetic resonance spectrum of 31P donors in silicon quantum computer

    Get PDF
    The influence of the electric field created by a gate potential of the silicon quantum computer on the hyperfine interaction constant (HIC) is obtained. The errors due to technological inaccuracy of location of donor atoms under a gate are evaluated. The energy spectra of electron-nuclear spin system of two interacting donor atoms with various values of HIC are calculated. The presence of two pairs of anticrossing levels in the ground electronic state is shown. Parameters of the structure at which errors rate can be greatly minimized are found.Comment: 12 pages,, 3 figure

    Structure and vibrational spectra of carbon clusters in SiC

    Full text link
    The electronic, structural and vibrational properties of small carbon interstitial and antisite clusters are investigated by ab initio methods in 3C and 4H-SiC. The defects possess sizable dissociation energies and may be formed via condensation of carbon interstitials, e.g. generated in the course of ion implantation. All considered defect complexes possess localized vibrational modes (LVM's) well above the SiC bulk phonon spectrum. In particular, the compact antisite clusters exhibit high-frequency LVM's up to 250meV. The isotope shifts resulting from a_{13}C enrichment are analyzed. In the light of these results, the photoluminescence centers D_{II} and P-U are discussed. The dicarbon antisite is identified as a plausible key ingredient of the D_{II}-center, whereas the carbon split-interstitial is a likely origin of the P-T centers. The comparison of the calculated and observed high-frequency modes suggests that the U-center is also a carbon-antisite based defect.Comment: 15 pages, 6 figures, accepted by Phys. Rev.
    corecore