6,473 research outputs found
Spectrometer for Hard X-Ray Free Electron Laser Based on Diffraction Focusing
X-ray free electron lasers (XFELs) generate sequences of ultra-short,
spatially coherent pulses of x-ray radiation. We propose the diffraction
focusing spectrometer (DFS), which is able to measure the whole energy spectrum
of the radiation of a single XFEL pulse with an energy resolution of . This is much better than for most modern x-ray
spectrometers. Such resolution allows one to resolve the fine spectral
structure of the XFEL pulse. The effect of diffraction focusing occurs in a
single crystal plate due to dynamical scattering, and is similar to focusing in
a Pendry lens made from the metamaterial with a negative refraction index. Such
a spectrometer is easier to operate than those based on bent crystals. We show
that the DFS can be used in a wide energy range from 5 keV to 20 keV.Comment: 9 pages, 8 figures, 2 table
What John Q. Public wants to read (and doesn't want to read) in the newspaper : an honors thesis [(HONRS 499)]
There is no abstract available for this thesis.Honors CollegeThesis (B.?.
Theory of valley-orbit coupling in a Si/SiGe quantum dot
Electron states are studied for quantum dots in a strained Si quantum well,
taking into account both valley and orbital physics. Realistic geometries are
considered, including circular and elliptical dot shapes, parallel and
perpendicular magnetic fields, and (most importantly for valley coupling) the
small local tilt of the quantum well interface away from the crystallographic
axes. In absence of a tilt, valley splitting occurs only between pairs of
states with the same orbital quantum numbers. However, tilting is ubiquitous in
conventional silicon heterostructures, leading to valley-orbit coupling. In
this context, "valley splitting" is no longer a well defined concept, and the
quantity of merit for qubit applications becomes the ground state gap. For
typical dots used as qubits, a rich energy spectrum emerges, as a function of
magnetic field, tilt angle, and orbital quantum number. Numerical and
analytical solutions are obtained for the ground state gap and for the mixing
fraction between the ground and excited states. This mixing can lead to valley
scattering, decoherence, and leakage for Si spin qubits.Comment: 18 pages, including 4 figure
Optical beam guidance in monolithic polymer chips for miniaturized colorimetric assays
For the first time, we present a simple and robust optical concept to enable precise and sensitive read-out of colorimetric assays in flat lab-on-a-chip devices. The optical guidance of the probe beam through an incorporated measurement chamber to the detector is based on the total internal reflection at V-grooves in the polymer chip. This way, the optical path length through the flat measurement chamber and thus the performance of the measurements are massively enhanced compared to direct (perpendicular) beam incidence. This is demonstrated by a chip-based, colorimetric glucose-assay on serum. Outstanding features are an excellent reproducibility (CV= 1.91 %), a competitive lower limit of detection (cmin = 124 μM), and a high degree of linearity (R2 = 0.998) within a working range extending over nearly three orders of magnitude
- …