66 research outputs found

    Drag reduction through higher wing loading

    Get PDF
    A reduction in wing area, thickness, and span increases wing loading and lowers parasitic drag for a typical light airplane by 10.5%

    Icing tunnel tests of a composite porous leading edge for use with a liquid anti-ice system

    Get PDF
    The efficacy of liquid ice protection systems which distribute a glycol-water solution onto leading edge surfaces through a porous skin was demonstrated in tests conducted in the NASA Lewis icing research tunnel using a composite porous leading edge panels. The data obtained were compared with the performance of previously tested stainless steel leading edge with the same geometry. Results show: (1) anti-ice protection of a composite leading edge is possible for all the simulated conditions tested; (2) the glycol flow rates required to achieve anti-ice protection were generally much higher than those required for a stainless steel panel; (3) the low reservoir pressures of the glycol during test runs indicates that more uniform distribution of glycol, and therefore lower glycol flow rates, can probably be achieved by decreasing the porosity of the panel; and (4) significant weight savings can be achieved in fluid ice protection systems with composite porous leading edges. The resistance of composite panels to abrasion and erosion must yet be determined before they can be incorporated in production systems

    A method of predicting flow rates required to achieve anti-icing performance with a porous leading edge ice protection system

    Get PDF
    An analytical method was developed for predicting minimum flow rates required to provide anti-ice protection with a porous leading edge fluid ice protection system. The predicted flow rates compare with an average error of less than 10 percent to six experimentally determined flow rates from tests in the NASA Icing Research Tunnel on a general aviation wing section

    Flight test data for light aircraft spoiler roll control systems

    Get PDF
    The results of flight tests to determine the characteristics of spoiler roll control systems on three different light aircraft are summarized. Comparisons are made with wind tunnel data where available. Flight tests indicate that excellent roll characteristics can be achieved with spoilers. Yaw coupling with roll control inputs is virtually eliminated. Roll rates remain high when flaps are deployed at low speed. Very mild nonlinearities in control effectiveness exist, and there was no deadband or lag detected

    A method of predicting flow rates required to achieve anti-icing performance with a porous leading edge ice protection system

    Get PDF
    A proposed method of analytically predicting the minimum fluid flow rate required to provide anti-ice protection with a porous leading edge system on a wing under a given set of flight conditions is presented. Results of the proposed method are compared with the actual results of an icing test of a real wing section in the NASA Lewis Icing Research Tunnel

    Flight test data for a Cessna Cardinal

    Get PDF
    The results of a flight test analysis of the performance of a standard Cessna 177B Cardinal airplane are presented. The airplane was fully instrumented to obtain steady state performance, stick-fixed dynamic stability characteristics, and roll response data. Results obtained include graphs of C sub L versus alpha, C sub D versus C sub L, and speed-power relationships. Dynamic data include Phugoid and Dutch characteristics, and roll response characteristics

    Evaluation of a pneumatic boot deicing system on a general aviation wing model

    Get PDF
    The aerodynamic characteristics of a typical modern general aviation airfoil were investigated with and without a pneumatic boot ice protection system. The ice protection effectiveness of the boot was studied. This includes the change in drag on the airfoil with the boot inflated and deflated, the change in drag due to primary and residual ice formation, drag change due to cumulative residual ice formation, and parameters affecting boot effectiveness. Boot performance was not affected by tunnel total temperature or velocity. Marginal effect in performance was associated with angle of attack. Significant effects on performance were caused by variations in droplet size, LWC, ice cap thickness inflation pressure, and surface treatment

    Icing tunnel tests of a glycol-exuding porous leading edge ice protection system on a general aviation airfoil

    Get PDF
    A glycol-exuding porous leading edge ice protection system was tested. Results show that the system is very effective in preventing ice accretion (anti-ice mode) or removing ice from an airfoil. Minimum glycol flow rates required for anti-icing are a function of velocity, liquid water content in the air, ambient temperature, and droplet size. Large ice caps were removed in only a few minutes using anti-ice flow rates. It was found that the shed time is a function of the type of ice, size of the ice cap, angle of attack, and glycol flow rate. Wake survey measurements show that there is no significant drag penalty for the installation or operation of the system tested

    A feasibility study for advanced technology integration for general aviation

    Get PDF
    An investigation was conducted to identify candidate technologies and specific developments which offer greatest promise for improving safety, fuel efficiency, performance, and utility of general aviation airplanes. Interviews were conducted with general aviation airframe and systems manufacturers and NASA research centers. The following technologies were evaluated for use in airplane design tradeoff studies conducted during the study: avionics, aerodynamics, configurations, structures, flight controls, and propulsion. Based on industry interviews and design tradeoff studies, several recommendations were made for further high payoff research. The most attractive technologies for use by the general aviation industry appear to be advanced engines, composite materials, natural laminar flow airfoils, and advanced integrated avionics systems. The integration of these technologies in airplane design can yield significant increases in speeds, ranges, and payloads over present aircraft with 40 percent to 50 percent reductions in fuel used

    Burst Testing of Triaxial Braided Composite Tubes

    Get PDF
    Applications using triaxial braided composites are limited by the materials transverse strength which is determined by the delamination capacity of unconstrained, free-edge tows. However, structural applications such as cylindrical tubes can be designed to minimize free edge effects and thus the strength with and without edge stresses is relevant to the design process. The transverse strength of triaxial braided composites without edge effects was determined by internally pressurizing tubes. In the absence of edge effects, the axial and transverse strength were comparable. In addition, notched specimens, which minimize the effect of unconstrained tow ends, were tested in a variety of geometries. Although the commonly tested notch geometries exhibited similar axial and transverse net section failure strength, significant dependence on notch configuration was observed. In the absence of unconstrained tows, failure ensues as a result of bias tow rotation, splitting, and fracture at cross-over regions
    • …
    corecore