28 research outputs found

    Processing of nucleopeptides mimicking the topoisomerase I–DNA covalent complex by tyrosyl-DNA phosphodiesterase

    No full text
    Tyrosyl-DNA phosphodiesterase-1 (Tdp1) is the only known enzyme to remove tyrosine from complexes in which the amino acid is linked to the 3′-end of DNA fragments. Such complexes can be produced following DNA processing by topoisomerase I, and recent studies in yeast have demonstrated the importance of TDP1 for cell survival following topoisomerase I-mediated DNA damage. In the present study, we used synthetic oligodeoxynucleotide–peptide conjugates (nucleopeptides) and recombinant yeast Tdp1 to investigate the molecular determinants for Tdp1 activity. We find that Tdp1 can process nucleopeptides with up to 13 amino acid residues but is poorly active with a 70 kDa fragment of topoisomerase I covalently linked to a suicide DNA substrate. Furthermore, Tdp1 was more effective with nucleopeptides with one to four amino acids than 15 amino acids. Tdp1 was also more effective with nucleopeptides containing 15 nt than with homolog nucleopeptides containing 4 nt. These results suggest that DNA binding contributes to the activity of Tdp1 and that Tdp1 would be most effective after topoisomerase I has been proteolyzed in vivo

    Topoisomerase I and II Activity Assays

    No full text
    International audienceDNA topoisomerases I and II (top1 and top2, respectively) are ubiquitous enzymes that play an essential role in transcription, replication, chromosome segregation, and DNA repair. The basic enzymatic reaction of topoisomerases, namely reversible DNA nicking, is a transesterification reaction where a DNA phosphodiester bond is transferred to a specific enzyme tyrosine residue. Eukaryotic top1 and top2 exhibit major differences concerning their mechanism of action. Top1 acts as a monomer and forms a covalent bond with the 3'-terminus of a DNA single-strand break (1-3) whereas top2 acts as an homodimer and forms a covalent bond with the 5'-terminus of the DNA double-strand break with a four base-pairs overhang (Fig. 1) (1-4). No energy cofactor is required for top1 activity, whereas top2 hydrolyzes adenosine triphosphate (ATP) during its catalytic cycle. Fig. 1. Top1- and top2-cleavage complexes. (A) Top1 acts as a monomer, makes a single-strand break and covalently binds to the 3'-end of the break, leaving a 5'-hydroxyl end. (B) Top2 acts as a dimer, and generally makes a double-strand break. Each strand is cleaved by one monomer, with a 4-base overhang. Each monomer covalently binds to the 5'-end of the break and leaves a 3'-hydroxyl end

    Poisoning of human DNA topoisomerase I by ecteinascidin 743, an anticancer drug that selectively alkylates DNA in the minor groove

    No full text
    Ecteinascidin 743 (Et743, National Service Center 648766) is a potent antitumor agent from the Caribbean tunicate Ecteinascidia turbinata. Although Et743 is presently in clinical trials for human cancers, the mechanisms of antitumor activity of Et743 have not been elucidated. Et743 can alkylate selectively guanine N2 from the DNA minor groove, and this alkylation is reversed by DNA denaturation. Thus, Et743 differs from other DNA alkylating agents presently in the clinic (by both its biochemical activities and its profile of antitumor activity in preclinical models). In this study, we investigated cellular proteins that can bind to DNA alkylated by Et743. By using an oligonucleotide containing high-affinity Et743 binding sites and nuclear extracts from human leukemia CEM cells, we purified a 100-kDa protein as a cellular target of Et743 and identified it as topoisomerase I (top1). Purified top1 was then tested and found to produce cleavage complexes in the presence of Et743, whereas topoisomerase II had no effect. DNA alkylation was essential for the formation of top1-mediated cleavage complexes by Et743, and the distribution of the drug-induced top1 sites was different for Et743 and camptothecin. top1–DNA complexes were also detected in Et743-treated CEM cells by using cesium chloride gradient centrifugation followed by top1 immunoblotting. These data indicate that DNA minor groove alkylation by Et743 induces top1-mediated protein-linked DNA breaks and that top1 is a target for Et743 in vitro and in vivo

    Induction of topoisomerase I cleavage complexes by 1-β-d-arabinofuranosylcytosine (ara-C) in vitro and in ara-C-treated cells

    No full text
    1-β-d-Arabinofuranosylcytosine (Ara-C) is a nucleoside analog commonly used in the treatment of leukemias. Ara-C inhibits DNA polymerases and can be incorporated into DNA. Its mechanism of cytotoxicity is not fully understood. Using oligonucleotides and purified human topoisomerase I (top1), we found a 4- to 6-fold enhancement of top1 cleavage complexes when ara-C was incorporated at the +1 position (immediately 3′) relative to a unique top1 cleavage site. This enhancement was primarily due to a reversible inhibition of top1-mediated DNA religation. Because ara-C incorporation is known to alter base stacking and sugar puckering at the misincorporation site and at the neighboring base pairs, the observed inhibition of religation at the ara-C site suggests the importance of the alignment of the 5′-hydroxyl end for religation with the phosphate group of the top1 phosphotyrosine bond. This study also demonstrates that ara-C treatment and DNA incorporation trap top1 cleavage complexes in human leukemia cells. Finally, we report that camptothecin-resistant mouse P388/CPT45 cells with no detectable top1 are crossresistant to ara-C, which suggests that top1 poisoning is a potential mechanism for ara-C cytotoxicity

    Trapping of Mammalian Topoisomerase I and Recombinations Induced by Damaged DNA Containing Nicks or Gaps

    No full text
    International audienceWe used purified mammalian topoisomerases I (top1) and oligonucleotides containing a unique top1 cleavage site to study top1-mediated cleavage and recombination in the presence of nicks and short gaps mimicking DNA damage. In general, top1 cleavage was not induced opposite to the nicks, and nicks upstream from the top1 cleavage site suppressed top1 activity. Irreversible top1 cleavage complexes ("suicide products" or "aborted complexes") were produced in DNA containing nicks or short gaps just opposite to the normal top1 cleavage site. Camptothecin enhanced the formation of the aborted top1 complexes only for nicks downstream from the cleavage site. These aborted (suicide) complexes can mediate DNA recombination and promote illegitimate recombination by catalyzing the ligation of nonhomologous DNA fragments (acceptors). We report for the first time that top1-mediated recombination is greatly enhanced by the presence of a phosphate at the 5' terminus of the top1 aborted complex (donor DNA). By contrast, phosphorylation of the 3' terminus of the gap did not affect recombination. At concentrations that strongly enhanced inhibition of intramolecular religation, resulting in an increase of top1 cleavable complexes, camptothecin did not reduce recombination (intermolecular religation). Nicks or gaps with 5'-phosphate termini would be expected to be produced directly by ionizing radiations or by processing of abasic sites and DNA lesions induced by carcinogens or drugs used in cancer chemotherapy. Thus, these results further demonstrate that DNA damage can efficiently trap top1-cleavable complexes and enhance top1-mediated DNA recombination

    DNA Protein Cross-Links Produced by NSC 652287, a Novel Thiophene Derivative Active Against Human Renal Cancer Cells

    No full text
    International audience2, 5-bis(5-Hydroxymethyl-2-thienyl)furan (NSC 652287), is a representative of a series of thiophene derivatives that exhibit potent and selective antitumor activity against several tumor cell lines in the National Cancer Institute Anticancer Drug Screen. NSC 652287 has noticeable activity for the renal cell lines and produces cures in certain corresponding xenografts. The cellular mechanisms of action of NSC 652287 were therefore investigated in this study in greater detail. The most sensitive renal carcinoma cell line, A498, exhibited cell cycle arrest in G(0)-G(1) and G(2)-M at 10 nM NSC 652287, with increased p53 and p21(WAF1) protein. At higher concentrations, NSC 652287 still induced p53 elevation but with p21(WAF1) reduction and massive apoptosis. These results collectively suggested that NSC 652287 induced DNA damage. Using alkaline elution techniques, we found that NSC 652287 induced both DNA-protein and DNA-DNA cross-links with no detectable DNA single-strand breaks. These DNA-protein cross-links (DPC) persisted for at least 12 h after drug removal and their frequency was correlated with cytotoxicity in the renal cell lines studied. The most sensitive cells (A498) produced the highest DPC followed by the cell line with intermediate sensitivity (TK-10). DPC were minimal in the two resistant cell lines, ACHN and UO-31. Nonetheless, a similar degree of DPC occurred at doses imparting equitoxic effects. These results indicate that DNA is a primary target for the novel and potent anticancer thiophene derivative, NSC 652287. NSC 652287 did not cross-link purified DNA or mammalian topoisomerase I suggesting the importance of active metabolite(s) for the cross-linking activity

    New method using growth dynamics to quantify microbial contamination of kaolinite slurries

    No full text
    The early and sensitive detection of microbial contamination of kaolinite slurries is needed for timely treatment to prevent spoilage. The sensitivity, reproducibility, and time required by current methods, such as the dip-slide method, do not meet this challenge. A more sensitive, reproducible, and efficient method is required. The objective of the present study was to develop and validate such a method. The new method is based on the measured growth kinetics of indigenous kaolinite-slurry microorganisms. The microorganisms from kaolinite slurries with different contamination levels were eluted and quantified as colony-forming units (CFUs). Known quantities of E. coli (ATCC 11775) were inoculated into sterilized kaolinite slurries to relate kaolinite-slurry CFUs to true microbial concentrations. The inoculated slurries were subsequently incubated, re-extracted, and microbial concentrations quantified. The ratio of the known inoculated E. coli concentration to the measured concentration was expressed as the recovery efficiency coefficient. Indigenous microbial communities were serially diluted, incubated, and the growth kinetics measured and related to CFUs. Using the new method, greater optical densities (OD) and visible microbial growth were measured for greater dilutions of kaolinite slurries with large microbial-cell concentrations. Growth conditions were optimized to maximize the correlation between contamination level, microbial growth kinetics, and OD value. A Standard Bacterial Unit (SBU) scale with five levels of microbial contamination was designed for kaolinite slurries using the experimental results. The SBU scale was validated using a blind test of 50 unknown slurry samples with various contamination levels provided by the Imerys Company. The validation tests revealed that the new method using the SBU scale was more time efficient, sensitive, and reproducible than the dip-slide method

    Effects of Uracil Incorporation, DNA Mismatches, and Abasic Sites on Cleavage and Religation Activities of Mammalian Topoisomerase I

    No full text
    International audienceAbasic sites and deamination of cytosine to uracil are probably the most common types of endogenous DNA damage. The effects of such lesions on DNA topoisomerase I (top1) activity were examined in oligonucleotides containing a unique top1 cleavage site. The presence of uracils and abasic sites within the first 4 bases immediately 5' to the cleavage site suppressed normal top1 cleavage and induced new top1 cleavage sites. Uracils immediately 3' to the cleavage site increased cleavage and produced a camptothecin mimicking effect. A mismatch with a bulge or abasic sites immediately 3' to the top1 cleavage site irreversibly trapped top1 cleavable complexes in the absence of camptothecin and produced a suicide cleavage complex. These results demonstrate that top1 activity is sensitive to physiological, environmental, and pharmacological DNA modifications and that top1 can act as a specific mismatch- and abasic site-nicking enzyme
    corecore