2 research outputs found

    Rapid Identification of Ligand-Binding Sites by Using an Assignment-Free NMR Approach

    No full text
    In this study, we developed an assignment-free approach for rapid identification of ligand-binding sites in target proteins by using NMR. With a sophisticated cell-free stable isotope-labeling procedure that introduces <sup>15</sup>N- or <sup>13</sup>C-labels to specific atoms of target proteins, this approach requires only a single series of ligand titrations with labeled targets. Using titration data, ligand-binding sites in the target protein can be identified without time-consuming assignment procedures. We demonstrated the feasibility of this approach by using structurally well-characterized interactions between mitogen-activated protein (MAP) kinase p38α and its inhibitor 2-amino-3-benzyloxypyridine. Furthermore, we confirmed the recently proposed fatty acid binding to p38α and confirmed the fatty acid-binding site in the MAP kinase insert region

    Interaction Analysis of FABP4 Inhibitors by X‑ray Crystallography and Fragment Molecular Orbital Analysis

    No full text
    X-ray crystal structural determination of FABP4 in complex with four inhibitors revealed the complex binding modes, and the resulting observations led to improvement of the inhibitory potency of FABP4 inhibitors. However, the detailed structure–activity relationship (SAR) could not be explained from these structural observations. For a more detailed understanding of the interactions between FABP4 and inhibitors, fragment molecular orbital analyses were performed. These analyses revealed that the total interfragment interaction energies of FABP4 and each inhibitor correlated with the ranking of the <i>K</i><sub>i</sub> value for the four inhibitors. Furthermore, interactions between each inhibitor and amino acid residues in FABP4 were identified. The oxygen atom of Lys58 in FABP4 was found to be very important for strong interactions with FABP4. These results might provide useful information for the development of novel potent FABP4 inhibitors
    corecore