3,131 research outputs found

    Glycated hemoglobin and incident type 2 diabetes in singaporean Chinese adults: The Singapore Chinese Health Study

    Get PDF
    Background: The American Diabetes Association recently included glycated hemoglobin in the diagnostic criteria for diabetes, but research on the utility of this biomarker in Southeast Asians is scant. The aim of this study was to evaluate the association between percent HbA1c and incident diabetes in an Asian population of adult men and women without reported diabetes. Methods: Data analysis of 5,770 men and women enrolled in the Singapore Chinese Health Study who provided a blood sample at the follow-up I visit (1999-2004) and had no cancer and no reported history of diabetes or cardiovascular disease events. Diabetes was defined as self-report of physician diagnosis, identified at the follow-up II visit (2006-2010). Results: Hazard ratios (and 95%confidence intervals) for incident diabetes by 5 categories of HbA1c were estimated with Cox regression models and continuous HbA1c with cubic spline analysis. Compared to individuals with an HbA1c ≤ 5.7% (≤39 mmol/mol), individuals with HbA1c 5.8-5.9% (40-41 mmol/mol), 6.0-6.1% (42-43 mmol/mol), 6.2-6.4% (44-47 mmol/mol), and ≥ 6.5% (≥48 mmol/mol) had significantly increased risk for incident diabetes during followup. In cubic spline analysis, levels below 5.7% HbA1c were not significantly associated with incident diabetes. Conclusions: Our study found a strong and graded association with HbA1c 5.8% and above with incident diabetes in Chinese men and women

    Statistical Basis for Predicting Technological Progress

    Get PDF
    Forecasting technological progress is of great interest to engineers, policy makers, and private investors. Several models have been proposed for predicting technological improvement, but how well do these models perform? An early hypothesis made by Theodore Wright in 1936 is that cost decreases as a power law of cumulative production. An alternative hypothesis is Moore's law, which can be generalized to say that technologies improve exponentially with time. Other alternatives were proposed by Goddard, Sinclair et al., and Nordhaus. These hypotheses have not previously been rigorously tested. Using a new database on the cost and production of 62 different technologies, which is the most expansive of its kind, we test the ability of six different postulated laws to predict future costs. Our approach involves hindcasting and developing a statistical model to rank the performance of the postulated laws. Wright's law produces the best forecasts, but Moore's law is not far behind. We discover a previously unobserved regularity that production tends to increase exponentially. A combination of an exponential decrease in cost and an exponential increase in production would make Moore's law and Wright's law indistinguishable, as originally pointed out by Sahal. We show for the first time that these regularities are observed in data to such a degree that the performance of these two laws is nearly tied. Our results show that technological progress is forecastable, with the square root of the logarithmic error growing linearly with the forecasting horizon at a typical rate of 2.5% per year. These results have implications for theories of technological change, and assessments of candidate technologies and policies for climate change mitigation

    Deep Learning Framework with Multi-Head Dilated Encoders for Enhanced Segmentation of Cervical Cancer on Multiparametric Magnetic Resonance Imaging.

    Get PDF
    T2-weighted magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) are essential components of cervical cancer diagnosis. However, combining these channels for the training of deep learning models is challenging due to image misalignment. Here, we propose a novel multi-head framework that uses dilated convolutions and shared residual connections for the separate encoding of multiparametric MRI images. We employ a residual U-Net model as a baseline, and perform a series of architectural experiments to evaluate the tumor segmentation performance based on multiparametric input channels and different feature encoding configurations. All experiments were performed on a cohort of 207 patients with locally advanced cervical cancer. Our proposed multi-head model using separate dilated encoding for T2W MRI and combined b1000 DWI and apparent diffusion coefficient (ADC) maps achieved the best median Dice similarity coefficient (DSC) score, 0.823 (confidence interval (CI), 0.595-0.797), outperforming the conventional multi-channel model, DSC 0.788 (95% CI, 0.568-0.776), although the difference was not statistically significant (p > 0.05). We investigated channel sensitivity using 3D GRAD-CAM and channel dropout, and highlighted the critical importance of T2W and ADC channels for accurate tumor segmentation. However, our results showed that b1000 DWI had a minor impact on the overall segmentation performance. We demonstrated that the use of separate dilated feature extractors and independent contextual learning improved the model's ability to reduce the boundary effects and distortion of DWI, leading to improved segmentation performance. Our findings could have significant implications for the development of robust and generalizable models that can extend to other multi-modal segmentation applications

    Preventive medication use among persons with limited life expectancy

    Get PDF
    Persons with limited life expectancy (LLE) – less than 1 year – are significant consumers of health care, are at increased risk of polypharmacy and adverse drug events, and have dynamic health statuses. Therefore, medication use among this population must be appropriate and regularly evaluated. The objective of this review is to assess the current state of knowledge and clinical practice presented in the literature regarding preventive medication use among persons with LLE. We searched Medline, Embase, and CINAHL using Medical Subject Headings. Broad searches were first conducted using the terms ‘terminal care or therapy’ or ‘advanced disease’ and ‘polypharmacy’ or ‘inappropriate medication’ or ‘preventive medicine’, followed by more specific searches using the terms ‘statins’ or ‘anti-hypertensives’ or ‘bisphosphonates’ or ‘laxatives’ and ‘terminal care’. Frameworks to assess appropriate versus inappropriate medications for persons with LLE, and the prevalence of potentially inappropriate medication use among this population, are presented. A considerable proportion of individuals with a known terminal condition continue to take chronic disease preventive medications until death despite questionable benefit. The addition of palliative preventive medications is advised. There is an indication that as death approaches the shift from a curative to palliative goal of care translates into a shift in medication use. This literature review is a first step towards improving medication use and decreasing polypharmacy in persons at the end of life. There is a need to develop consensus criteria to assess appropriate versus inappropriate medication use, specifically for individuals at the end of life

    Bidirectional association between self-reported hypertension and gout: The Singapore Chinese health study

    Get PDF
    It has been hypothesized that the association between hypertension and gout is bidirectional, however, few studies have examined this in a prospective cohort.We analyzed data from the Singapore Chinese Health Study (SCHS) follow-up I (1999-2004) and II (2006-2010) interviews, when both physician-diagnosed hypertension and gout were self-reported. We included participants with data for both follow-up interviews and who were free of heart disease, stroke and cancer at follow-up I. The analysis of hypertension and risk of gout included 31,137 participants when prevalent gout cases were excluded, while the analysis of gout and risk of hypertension included 20,369 participants when prevalent hypertension cases were excluded. Cox proportional hazards models were used to estimate multivariable-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs). The mean age at follow-up I was 60.1 (SD 7.3) years, and the average follow-up was 6.8 (SD 1.4) years. In the analysis of hypertension and risk of gout, 682 incident cases were identified. Compared to normotensive participants, hypertensive patients had an88% increased risk of developing gout (HR 1.88; 95% CI 1.61-2.21). In the parallel analysis, 5,450 participants reported to have newly diagnosed hypertension during followup. Compared to participants without gout, those with gout had an18% increased risk of developing hypertension (HR 1.18; 95% CI 1.02-1.37). The bidirectional association was stronger in normal weight adults compared to overweight/obese individuals (Pinteraction = 0.06 and 0.04, respectively). The hypertension to gout association was stronger in women compared to men (Pinteraction = 0.04), while the gout to hypertension association was evident in women but not in men (Pinteraction = 0.02). In conclusion, our results suggest that the hypertension-gout association is bidirectional in this cohort of Singapore Chinese adults. The potential interactions of the bidirectional association with obesity and sex deserve further investigations

    Optimisation of b-values for the accurate estimation of the apparent diffusion coefficient (ADC) in whole-body diffusion-weighted MRI in patients with metastatic melanoma.

    Get PDF
    OBJECTIVE: To establish optimised diffusion weightings ('b-values') for acquisition of whole-body diffusion-weighted MRI (WB-DWI) for estimation of the apparent diffusion coefficient (ADC) in patients with metastatic melanoma (MM). Existing recommendations for WB-DWI have not been optimised for the tumour properties in MM; therefore, evaluation of acquisition parameters is essential before embarking on larger studies. METHODS: Retrospective clinical data and phantom experiments were used. Clinical data comprised 125 lesions from 14 examinations in 11 patients with multifocal MM, imaged before and/or after treatment with immunotherapy at a single institution. ADC estimates from these data were applied to a model to estimate the optimum b-value. A large non-diffusing phantom was used to assess eddy current-induced geometric distortion. RESULTS: Considering all tumour sites from pre- and post-treatment examinations together, metastases exhibited a large range of mean ADC values, [0.67-1.49] × 10-3 mm2/s, and the optimum high b-value (bhigh) for ADC estimation was 1100 (10th-90th percentile: 740-1790) s/mm2. At higher b-values, geometric distortion increased, and longer echo times were required, leading to reduced signal. CONCLUSIONS: Theoretical optimisation gave an optimum bhigh of 1100 (10th-90th percentile: 740-1790) s/mm2 for ADC estimation in MM, with the large range of optimum b-values reflecting the wide range of ADC values in these tumours. Geometric distortion and minimum echo time increase at higher b-values and are not included in the theoretical optimisation; bhigh in the range 750-1100 s/mm2 should be adopted to maintain acceptable image quality but performance should be evaluated for a specific scanner. KEY POINTS: • Theoretical optimisation gave an optimum high b-value of 1100 (10th-90th percentile: 740-1790) s/mm2 for ADC estimation in metastatic melanoma. • Considering geometric distortion and minimum echo time (TE), a b-value in the range 750-1100 s/mm2 is recommended. • Sites should evaluate the performance of specific scanners to assess the effect of geometric distortion and minimum TE

    Developing and testing a robotic MRI/CT fusion biopsy technique using a purpose-built interventional phantom.

    Get PDF
    BACKGROUND: Magnetic resonance imaging (MRI) can be used to target tumour components in biopsy procedures, while the ability to precisely correlate histology and MRI signal is crucial for imaging biomarker validation. Robotic MRI/computed tomography (CT) fusion biopsy offers the potential for this without in-gantry biopsy, although requires development. METHODS: Test-retest T1 and T2 relaxation times, attenuation (Hounsfield units, HU), and biopsy core quality were prospectively assessed (January-December 2021) in a range of gelatin, agar, and mixed gelatin/agar solutions of differing concentrations on days 1 and 8 after manufacture. Suitable materials were chosen, and four biopsy phantoms were constructed with twelve spherical 1-3-cm diameter targets visible on MRI, but not on CT. A technical pipeline was developed, and intraoperator and interoperator reliability was tested in four operators performing a total of 96 biopsies. Statistical analysis included T1, T2, and HU repeatability using Bland-Altman analysis, Dice similarity coefficient (DSC), and intraoperator and interoperator reliability. RESULTS: T1, T2, and HU repeatability had 95% limits-of-agreement of 8.3%, 3.4%, and 17.9%, respectively. The phantom was highly reproducible, with DSC of 0.93 versus 0.92 for scanning the same or two different phantoms, respectively. Hit rate was 100% (96/96 targets), and all operators performed robotic biopsies using a single volumetric acquisition. The fastest procedure time was 32 min for all 12 targets. CONCLUSIONS: A reproducible biopsy phantom was developed, validated, and used to test robotic MRI/CT-fusion biopsy. The technique was highly accurate, reliable, and achievable in clinically acceptable timescales meaning it is suitable for clinical application

    Stabilizing multiple topological fermions on a quantum computer

    Get PDF
    AbstractIn classical and single-particle settings, non-trivial band topology always gives rise to robust boundary modes. For quantum many-body systems, however, multiple topological fermions are not always able to coexist, since Pauli exclusion prevents additional fermions from occupying the limited number of available topological modes. In this work, we show, through IBM quantum computers, how one can robustly stabilize more fermions than the number of topological modes through specially designed 2-fermion interactions. Our demonstration hinges on the realization of BDI- and D-class topological Hamiltonians on transmon-based quantum hardware, and relied on a tensor network-aided circuit recompilation approach. We also achieved the full reconstruction of multiple-fermion topological band structures through iterative quantum phase estimation (IQPE). All in all, our work showcases how advances in quantum algorithm implementation enable noisy intermediate-scale quantum (NISQ) devices to be exploited for topological stabilization beyond the context of single-particle topological invariants.</jats:p

    A Real-Time intelligent system for tracking patient condition

    Get PDF
    Hospitals have multiple data sources, such as embedded systems, monitors and sensors. The number of data available is increasing and the information are used not only to care the patient but also to assist the decision processes. The introduction of intelligent environments in health care institutions has been adopted due their ability to provide useful information for health professionals, either in helping to identify prognosis or also to understand patient condition. Behind of this concept arises this Intelligent System to track patient condition (e.g. critic events) in health care. This system has the great advantage of being adaptable to the environment and user needs. The system is focused in identifying critic events from data streaming (e.g. vital signs and ventilation) which is particularly valuable for understanding the patient’s condition. This work aims to demonstrate the process of creating an intelligent system capable of operating in a real environment using streaming data provided by ventilators and vital signs monitors. Its development is important to the physician because becomes possible crossing multiple variables in real-time by analyzing if a value is critic or not and if their variation has or not clinical importance

    Robustness Through Regime Flips in Collapsing Ecological Networks

    Get PDF
    © 2019, Crown. There has been considerable progress in our perception of organized complexity in recent years. Recurrent debates on the dynamics and stability of complex systems have provided several insights, but it is very difficult to find identifiable patterns in the relationship between complex network structure and dynamics. Traditionally an arena for theoreticians, much of this research has been invigorated by demonstration of alternate stable states in real world ecosystems such as lakes, coral reefs, forests and grasslands. In this work, we use topological connectivity attributes of eighty six ecological networks and link these with random and targeted perturbations, to obtain general patterns of behaviour of complex real world systems. We have analyzed the response of each ecological network to individual, grouped and cascading extinctions, and the results suggest that most networks are robust to loss of specialists until specific thresholds are reached in terms of network geodesics. If the extinctions persist beyond these thresholds, a state change or ‘flip’ occurs and the structural properties are altered drastically, although the network does not collapse. As opposed to simpler or smaller networks, we find larger networks to contain multiple states that may in turn, ensure long-term persistence, suggesting that complexity can endow resilience to ecosystems. The concept of critical transitions in ecological networks and the implications of these findings for complex systems characterized by networks are likely to be profound with immediate significance for ecosystem conservation, invasion biology and restoration ecology.Non
    corecore