23 research outputs found

    Treatment of colorectal cancer cells with nanocarrier encap-sulated camptothecin reveals histone modifier genes in the Wnt signaling pathway as important molecular cues for cancer targeting

    Get PDF
    Cancer cells are able to proliferate in an unregulated manner. There are several mechanisms involved that propel such neoplastic transformations. One of these processes involves bypassing cell death through changes in gene expression and, consequently, cell growth. This involves a complex epigenetic interaction within the cell, which drives it towards oncogenic transformations. These epigenetic events augment cellular growth by potentially altering chromatin structures and influencing key gene expressions. Therapeutic mechanisms have been developed to combat this by taking advantage of the underlying oncogenic mechanisms through chemical modulation. Camptothecin (CPT) is an example of this type of drug. It is a selective topoisomerase I inhibitor that is effective against many cancers, such as colorectal cancer. Previously, we successfully formulated a magnetic nanocarrier-conjugated CPT with β-cyclodextrin and iron NPs (Fe3O4) cross-linked using EDTA (CPT-CEF). Compared to CPT alone, it boasts higher efficacy due to its selective targeting and increased solubility. In this study, we treated HT29 colon cancer cells with CPT-CEF and attempted to investigate the cytotoxic effects of the formulation through an epigenetic perspective. By using RNA-Seq, several differentially expressed genes were obtained (p < 0.05). Enrichr was then used for the over-representation analysis, and the genes were compared to the epigenetic roadmap and histone modification database. The results showed that the DEGs had a high correlation with epigenetic modifications involving histone H3 acetylation. Furthermore, a subset of these genes was shown to be associated with the Wnt/β-catenin signaling pathway, which is highly upregulated in a large number of cancer cells. These genes could be investigated as downstream therapeutic targets against the uncontrolled proliferation of cancer cells. Further interaction analysis of the identified genes with the key genes of the Wnt/β-catenin signaling pathway in colorectal cancer identified the direct interactors and a few transcription regulators. Further analysis in cBioPortal confirmed their genetic alterations and their distribution across patient samples. Thus, the findings of this study reveal that colorectal cancer could be reversed by treatment with the CPT-CEF nanoparticle-conjugated nanocarrier through an epigenetic mechanism

    Overcoming the challenge of transduction of human T-cells with chimeric antigen receptor (CAR) specific for ERBB2 antigen

    Get PDF
    Breast cancer is one of the most common malignancies among woman. Decades of scientific study have linked the overexpression of ERBB2 antigen to aggressive tumors. To target aggressive breast cancer, chimeric antigen receptor (CAR) technology can be utilized. For this, human T-cells are transduced with a gene sequence encoding a CAR that is specific for tumor-associated antigens (TAAs). These genetically-engineered CAR transduced T-cells (CAR-T cells) are able to target the tumor antigen without the need for major histocompatibility complex (MHC) recognition, rendering it a potentially universal immunotherapeutic option. However, efficient transduction of therapeutic gene into human T-cells and further cell expansion are challenging. In this study, we reported a successful optimization of a transduction protocol using spinoculation on CD3+ T-cells with different concentrations of lentiviral plasmid encoding the CAR gene. CD3+T-cells were isolated from the peripheral blood mononuclear cells (PBMCs). The constructed CAR gene was inserted into a lentiviral plasmid containing the green fluorescent protein (GFP) tag and lentiviral particles were produced. These lentiviral particles were used to transduce activated T-cells by spinoculation. T-cells were activated using Dynabead-conjugated CD3/CD28 human T-cell activator and interleukin-2 (IL-2) before transduction. CD3+ T-cells were selected and GFP expression, which indicated transduction, was observed. Future studies will focus on in vitro and in vivo models to determine the efficiency of CAR-T cells in specifically targeting ERBB2-expressing cells

    Overcoming the challenge of transduction of human T-cells with chimeric antigen receptor (CAR) specific for ERBB2 antigen

    Get PDF
    Breast cancer is one of the most common malignancies among woman. Decades of scientific study have linked the overexpression of ERBB2 antigen to aggressive tumors. To target aggressive breast cancer, chimeric antigen receptor (CAR) technology can be utilized. For this, human T-cells are transduced with a gene sequence encoding a CAR that is specific for tumor-associated antigens (TAAs). These genetically-engineered CAR transduced T-cells (CAR-T cells) are able to target the tumor antigen without the need for major histocompatibility complex (MHC) recognition, rendering it a potentially universal immunotherapeutic option. However, efficient transduction of therapeutic gene into human T-cells and further cell expansion are challenging. In this study, we reported a successful optimization of a transduction protocol using spinoculation on CD3+ T-cells with different concentrations of lentiviral plasmid encoding the CAR gene. CD3+T-cells were isolated from the peripheral blood mononuclear cells (PBMCs). The constructed CAR gene was inserted into a lentiviral plasmid containing the green fluorescent protein (GFP) tag and lentiviral particles were produced. These lentiviral particles were used to transduce activated T-cells by spinoculation. T-cells were activated using Dynabead-conjugated CD3/CD28 human T-cell activator and interleukin-2 (IL-2) before transduction. CD3+ T-cells were selected and GFP expression, which indicated transduction, was observed. Future studies will focus on in vitro and in vivo models to determine the efficiency of CAR-T cells in specifically targeting ERBB2-expressing cells

    Hypoxia in bone and oxygen releasing biomaterials in fracture treatments using mesenchymal stem cell therapy: a review

    Get PDF
    Bone fractures have a high degree of severity. This is usually a result of the physical trauma of diseases that affect bone tissues, such as osteoporosis. Due to its highly vascular nature, the bone is in a constant state of remodeling. Although those of younger ages possess bones with high regenerative potential, the impact of a disrupted vasculature can severely affect the recovery process and cause osteonecrosis. This is commonly seen in the neck of femur, scaphoid, and talus bone. In recent years, mesenchymal stem cell (MSC) therapy has been used to aid in the regeneration of afflicted bone. However, the cut-off in blood supply due to bone fractures can lead to hypoxia-induced changes in engrafted MSCs. Researchers have designed several oxygen-generating biomaterials and yielded varying degrees of success in enhancing tissue salvage and preserving cellular metabolism under ischemia. These can be utilized to further improve stem cell therapy for bone repair. In this review, we touch on the pathophysiology of these bone fractures and review the application of oxygen-generating biomaterials to further enhance MSC-mediated repair of fractures in the three aforementioned parts of the bone

    Modulatory and regenerative potential of transplanted bone marrow derived mesenchymal stem cells on rifampicin-induced kidney toxicity

    Get PDF
    Anti-tuberculosis agent rifampicin is extensively used for its effectiveness. Possible complications of tuberculosis and prolonged rifampicin treatment include kidney damage; these conditions can lead to reduced efficiency of the affected kidney and consequently to other diseases. Bone marrow-derived mesenchymal stem cells (BMMSCs) can be used in conjunction with rifampicin to avert kidney damage; because of its regenerative and differentiating potentials into kidney cells. This research was designed to assess the modulatory and regenerative potentials of MSCs in averting kidney damage due to rifampicin-induced kidney toxicity in Wistar rats and their progenies. BMMSCs used in this research were characterized according to the guidelines of International Society for Cellular Therapy

    Human Dental Pulp Stem Cells (DPSCs) therapy in rescuing photoreceptors and establishing a sodium iodate-induced retinal degeneration rat model

    Get PDF
    Background: Different methods have been used to inject stem cells into the eye for research. We previously explored the intravitreal route. Here, we investigate the efficacy of intravenous and subretinal-transplanted human dental pulp stem cells (DPSCs) in rescuing the photoreceptors of a sodium iodate-induced retinal degeneration model. Methods: Three groups of Sprague Dawley rats were used: intervention, vehicle group and negative control groups (n = 6 in each). Intravenous injection of 60 mg/kg sodium iodate (day 0) induced retinal degeneration. On day 4 post-injection of sodium iodate, the rats in the intervention group received intravenous DPSC and subretinal DPSC in the right eye; rats in the vehicle group received subretinal Hank's balance salt solution and intravenous normal saline; while negative control group received nothing. Electroretinogram (ERG) was performed to assess the retinal function at day 0 (baseline), day 4, day 11, day 18, day 26, and day 32. By the end of the study at day 32, the rats were euthanized, and both their enucleated eyes were sent for histology. Results: No significant difference in maximal ERG a-wave (p = 0.107) and b-wave, (p = 0.153) amplitude was seen amongst the experimental groups. However, photopic 30 Hz flicker amplitude of the study eye showed significant differences in the 3 groups (p = 0.032). Within the intervention group, there was an improvement in 30 Hz flicker ERG response of all 6 treated right eyes, which was injected with subretinal DPSC; while the 30 Hz flicker ERG of the non-treated left eyes remained flat. Histology showed improved outer nuclear layer thickness in intervention group; however, findings were not significant compared to the negative and vehicle groups. Conclusion: Combination of subretinal and intravenous injection of DPSCs may have potential to rescue cone function from a NaIO3-induced retinal injury model

    Transplanted erythropoietin-expressing mesenchymal stem cells promote pro-survival gene expression and protect photoreceptors from sodium iodate-induced cytotoxicity in a retinal degeneration model

    Get PDF
    Mesenchymal stem cells (MSC) are highly regarded as a potential treatment for retinal degenerative disorders like retinitis pigmentosa and age-related macular degeneration. However, donor cell heterogeneity and inconsistent protocols for transplantation have led to varied outcomes in clinical trials. We previously showed that genetically-modifying MSCs to express erythropoietin (MSCEPO) improved its regenerative capabilities in vitro. Hence, in this study, we sought to prove its potential in vivo by transplanting MSCsEPO in a rat retinal degeneration model and analyzing its retinal transcriptome using RNA-Seq. Firstly, MSCsEPO were cultured and expanded before being intravitreally transplanted into the sodium iodate-induced model. After the procedure, electroretinography (ERG) was performed bi-weekly for 30 days. Histological analyses were performed after the ERG assessment. The retina was then harvested for RNA extraction. After mRNA-enrichment and library preparation, paired-end RNA-Seq was performed. Salmon and DESeq2 were used to process the output files. The generated dataset was then analyzed using over-representation (ORA), functional enrichment (GSEA), and pathway topology analysis tools (SPIA) to identify enrichment of key pathways in the experimental groups. The results showed that the MSCEPO-treated group had detectable ERG waves (P <0.05), which were indicative of successful phototransduction. The stem cells were also successfully detected by immunohistochemistry 30 days after intravitreal transplantation. An initial over-representation analysis revealed a snapshot of immune-related pathways in all the groups but was mainly overexpressed in the MSC group. A subsequent GSEA and SPIA analysis later revealed enrichment in a large number of biological processes including phototransduction, regeneration, and cell death (Padj <0.05). Based on these pathways, a set of pro-survival gene expressions were extracted and tabulated. This study provided an in-depth transcriptomic analysis on the MSCEPO-treated retinal degeneration model as well as a profile of pro-survival genes that can be used as candidates for further genetic enhancement studies on stem cells

    Retinal degeneration rat model: a study on the structural and functional changes in the retina following injection of sodium iodate

    Get PDF
    Retinal disorders account for a large proportion of ocular disorders that can lead to visual impairment or blindness, and yet our limited knowledge in the pathogenesis and choice of appropriate animal models for new treatment modalities may contribute to ineffective therapies. Although genetic in vivo models are favored, the variable expressivity and penetrance of these heterogeneous disorders can cause difficulties in assessing potential treatments against retinal degeneration. Hence, an attractive alternative is to develop a chemically-induced model that is both cost-friendly and standardizable. Sodium iodate is an oxidative chemical that is used to simulate late stage retinitis pigmentosa and age-related macular degeneration. In this study, retinal degeneration was induced through systemic administration of sodium iodate (NaIO3) at varying doses up to 80 mg/kg in Sprague-Dawley rats. An analysis on the visual response of the rats by electroretinography (ERG) showed a decrease in photoreceptor function with NaIO3 administration at a dose of 40 mg/kg or greater. The results correlated with the TUNEL assay, which revealed signs of DNA damage throughout the retina. Histomorphological analysis also revealed extensive structural lesions throughout the outer retina and parts of the inner retina. Our results provided a detailed view of NaIO3-induced retinal degeneration, and showed that the administration of 40 mg/kg NaIO3 was sufficient to generate disturbances in retinal function. The pathological findings in this model reveal a degenerating retina, and can be further utilized to develop effective therapies for RPE, photoreceptor, and bipolar cell regeneration

    Dental pulp stem cells therapy overcome photoreceptor cell death and protects the retina in a rat model of sodium iodate-induced retinal degeneration

    Get PDF
    Blindness and vision loss contribute to irreversible retinal degeneration, and cellular therapy for retinal cell replacement has the potential to treat individuals who have lost light sensitive photoreceptors in the retina. Retinal cells are well characterized in function, and are a subject of interest in cellular replacement therapy of photoreceptors and the retinal pigment epithelium. However, retinal cell transplantation is limited by various factors, including the choice of potential stem cell source that can show variability in plasticity as well as host tissue integration. Dental pulp is one such source that contains an abundance of stem cells. In this study we used dental pulp-derived mesenchymal stem cells (DPSCs) to mitigate sodium iodate (NaIO3) insult in a rat model of retinal degeneration. Sprague-Dawley rats were first given an intravitreal injection of 3 × 105 DPSCs as well as a single systemic administration of NaIO3 (40 mg/kg). Electroretinography (ERG) was performed for the next two months and was followed-up by histological analysis. The ERG recordings showed protection of DPSC-treated retinas within 4 weeks, which was statistically significant (* P ≤ .05) compared to the control. Retinal thickness of the control was also found to be thinner (*** P ≤ .001). The DPSCs were found integrated in the photoreceptor layer through immunohistochemical staining. Our findings showed that DPSCs have the potential to moderate retinal degeneration. In conclusion, DPSCs are a potential source of stem cells in the field of eye stem cell therapy due to its protective effects against retinal degeneration

    Molecular and cellular analysis of MSC-EPO-mediated protection of degenerating retinas

    Get PDF
    The retina is a multi-layered tissue that functions to provide vision. Because of its complexity, a dysfunction in any layer can lead to retinal degeneration and various degrees of visual impairment. Such cases are imminent, and current treatments can only delay the disease onset. In order to restore the degenerating retina, stem cells can be introduced. Mesenchymal stem cells (MSC) have been heralded as a potential cure due to its multipotent differentiation and cellular reparative capabilities, as shown in numerous clinical studies. However, there were also contradicting findings that revealed a worse prognosis for blindness after MSC transplantation. Such variable results are due to the limitations of MSC therapy. For example, donor cell heterogeneity, epigenetic modifications, and health status can have a huge impact on MSC efficacy. These limitations can be tackled by genetically-modifying MSCs to express exogenous growth factors that enhance the survivability of transplanted MSCs and the surrounding tissue. Erythropoietin (EPO) is a potential enhancer. Apart from being involved in erythropoiesis, EPO plays another role in anti-apoptosis and neuroregeneration by binding to EPO-receptors on non-erythroid cells like the retina. In this study, the novel synergistic interactions between MSC and EPO were explored in the form of human EPO-expressing MSCs (MSCsEPO) to evaluate its therapeutic potential in recovering the retina of a rodent model of retinal degeneration. Firstly, this was tested in an in vitro model of retinal cell toxicity. ARPE-19 cytotoxicity was induced with a retinotoxin known as sodium iodate (NaIO3) and treated with conditioned media (CM) from MSCs or MSCsEPO. Subsequent cell viability assays performed using MTT and flow cytometry revealed statistically significant increases in ARPE-19 survivability at 24 h and 48 h post-treatment (P <0.05). Furthermore, MSCEPO-CM treatment was shown to be statistically significant in the early phase of the treatment (24 h). However, both MSC and MSCEPO-CM treatments were comparable at 48 h. After performing the proof of concept study in vitro, the study proceeded to in vivo experimentation. After an initial optimization with various doses of systemically-administered NaIO3 (20 – 80 mg/kg) in Sprague-Dawley rats, it was found that 40 mg/kg was the ideal dose to trigger moderate retinal degeneration (around 50%). This was assessed using histo-anatomical methods and electroretinography (ERG), which revealed the degenerated retinal layers and attenuated ERG graphs. After successfully developing the model, an intravitreal transplantation of MSCsEPO was performed, and the model was assessed using similar techniques. The results showed that after day 30, both the MSC and MSCEPO treatment groups exhibited improved visual functions compared to the sham control (P <0.05). Although MSCs were able to protect visual function, MSCsEPO showed comparable results with MSCs. A further in-depth investigation using RNA sequencing revealed a set of pro-survival gene expressions. Most notably, MSCEPO was found to activate the phototransduction pathway. The PI3K-Akt signaling pathway, a downstream EPO activator, was also significantly activated by MSCEPO. The transcriptomics profile showed a clear, positive correlation with the functional data from the treated groups. Interestingly, several immune response pathways were upregulated in the MSC group but not MSCsEPO. Further studies are required to investigate the functional implications of this expression profile on immunomodulation. Taken together, this study has shown that treatment with MSCs conferred pro-survival benefits to retinal cells as well as protection against retinal degeneration. On the other hand, MSCsEPO showed comparable results with MSCs and hence, was not significantly better. Still, these results may be utilized in future studies to further investigate MSCEPO therapy for retinal diseases
    corecore