3,793 research outputs found

    The pseudo-Goldstone spectrum of 2-colour QCD at finite density

    Full text link
    We examine the spectrum of 2-colour lattice QCD with 4 continuum flavours at a finite chemical potential (μ\mu) for quark-number, on a 123×2412^3 \times 24 lattice. First we present evidence that the system undergoes a transition to a state with a diquark condensate, which spontaneously breaks quark number at μ=mπ/2\mu=m_\pi/2, and that this transition is mean field in nature. We then examine the 3 states that would be Goldstone bosons at μ=0\mu=0 for zero Dirac and Majorana quark masses. The predictions of chiral effective Lagrangians give a good description of the behaviour of these masses for μ<mπ/2\mu < m_\pi/2. Except for the heaviest of these states, these predictions diverge from our measurements, once μ\mu is significantly greater than mπ/2m_\pi/2. However, the qualitative behaviour of these masses, indicates that the physics is very similar to that predicted by these effective Lagrangians, and there is some indication that at least part of these discrepancies is due to saturation, a lattice artifact.Comment: 32 pages LaTeX/Revtex, 8 Postscript figure

    On strongly coupled quenched QED4, again: chiral symmetry breaking, Goldstone mechanism and the nature of the continuum limit

    Full text link
    We explore the possibility of a trivial continuum limit of strongly coupled quenched QED4 by contrasting our results with a Nambu--Jona Lasinio equation of state. The data does not compare favorably with such scenario. We study in detail the interplay of chiral symmetry breaking with the Goldstone mechanism, and clarify some puzzling features of past results.Comment: Contribution to Lat94, 3 pages, tar-compressed uuencoded ps fil

    ARCADE: Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission

    Get PDF
    The Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE) is a balloon-borne instrument designed to measure the temperature of the cosmic microwave background at centimeter wavelengths. ARCADE searches for deviations from a blackbody spectrum resulting from energy releases in the early universe. Long-wavelength distortions in the CMB spectrum are expected in all viable cosmological models. Detecting these distortions or showing that they do not exist is an important step for understanding the early universe. We describe the ARCADE instrument design, current status, and future plans.Comment: 12 pages, 6 figures. Proceedings of the Fundamental Physics With CMB workshop, UC Irvine, March 23-25, 2006, to be published in New Astronomy Review

    Quenched QCD at finite density: g=1g=1 and g=g=\infty

    Full text link
    We report on our ongoing effort to understand quenched lattice QCD at finite baryon number density. The quenched theory is sensitive to the baryon mass both at strong coupling and in the scaling region. However, we find that the quenched model is pathological for μ>mπ/2\mu > m_\pi/2 at β=6.0\beta= 6.0, in agreement with past Lanczos analyses of the Dirac operator.Comment: Contribution to Lat94, 3 pages, tar-compressed uuencoded ps fil

    Universality class for bootstrap percolation with m=3m=3 on the cubic lattice

    Full text link
    We study the m=3m=3 bootstrap percolation model on a cubic lattice, using Monte Carlo simulation and finite-size scaling techniques. In bootstrap percolation, sites on a lattice are considered occupied (present) or vacant (absent) with probability pp or 1p1-p, respectively. Occupied sites with less than mm occupied first-neighbours are then rendered unoccupied; this culling process is repeated until a stable configuration is reached. We evaluate the percolation critical probability, pcp_c, and both scaling powers, ypy_p and yhy_h, and, contrarily to previous calculations, our results indicate that the model belongs to the same universality class as usual percolation (i.e., m=0m=0). The critical spanning probability, R(pc)R(p_c), is also numerically studied, for systems with linear sizes ranging from L=32 up to L=480: the value we found, R(pc)=0.270±0.005R(p_c)=0.270 \pm 0.005, is the same as for usual percolation with free boundary conditions.Comment: 11 pages; 4 figures; to appear in Int. J. Mod. Phys.

    On kk-Core Percolation in Four Dimensions

    Full text link
    The kk-core percolation on the Bethe lattice has been proposed as a simple model of the jamming transition because of its hybrid first-order/second-order nature. We investigate numerically kk-core percolation on the four-dimensional regular lattice. For k=4k=4 the presence of a discontinuous transition is clearly established but its nature is strictly first order. In particular, the kk-core density displays no singular behavior before the jump and its correlation length remains finite. For k=3k=3 the transition is continuous

    Chiral Magnetic Effect on the Lattice

    Full text link
    We review recent progress on the lattice simulations of the chiral magnetic effect. There are two different approaches to analyze the chiral magnetic effect on the lattice. In one approach, the charge density distribution or the current fluctuation is measured under a topological background of the gluon field. In the other approach, the topological effect is mimicked by the chiral chemical potential, and the induced current is directly measured. Both approaches are now developing toward the exact analysis of the chiral magnetic effect.Comment: to appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    ARCADE 2 Observations of Galactic Radio Emission

    Full text link
    We use absolutely calibrated data from the ARCADE 2 flight in July 2006 to model Galactic emission at frequencies 3, 8, and 10 GHz. The spatial structure in the data is consistent with a superposition of free-free and synchrotron emission. Emission with spatial morphology traced by the Haslam 408 MHz survey has spectral index beta_synch = -2.5 +/- 0.1, with free-free emission contributing 0.10 +/- 0.01 of the total Galactic plane emission in the lowest ARCADE 2 band at 3.15 GHz. We estimate the total Galactic emission toward the polar caps using either a simple plane-parallel model with csc|b| dependence or a model of high-latitude radio emission traced by the COBE/FIRAS map of CII emission. Both methods are consistent with a single power-law over the frequency range 22 MHz to 10 GHz, with total Galactic emission towards the north polar cap T_Gal = 0.498 +/- 0.028 K and spectral index beta = -2.55 +/- 0.03 at reference frequency 1 GHz. The well calibrated ARCADE 2 maps provide a new test for spinning dust emission, based on the integrated intensity of emission from the Galactic plane instead of cross-correlations with the thermal dust spatial morphology. The Galactic plane intensity measured by ARCADE 2 is fainter than predicted by models without spinning dust, and is consistent with spinning dust contributing 0.4 +/- 0.1 of the Galactic plane emission at 22 GHz.Comment: 10 poges, 9 figures. Submitted to The Astrophysical Journa
    corecore