232 research outputs found

    Final-state read-out of exciton qubits by observing resonantly excited photoluminescence in quantum dots

    Full text link
    We report on a new approach to detect excitonic qubits in semiconductor quantum dots by observing spontaneous emissions from the relevant qubit level. The ground state of excitons is resonantly excited by picosecond optical pulses. Emissions from the same state are temporally resolved with picosecond time resolution. To capture weak emissions, we greatly suppress the elastic scattering of excitation beams, by applying obliquely incident geometry to the micro photoluminescence set-up. Rabi oscillations of the ground-state excitons appear to be involved in the dependence of emission intensity on excitation amplitude.Comment: 4 pages, 4 figures, to appear in Appl. Phys. Let

    Picosecond Nonlinear Relaxation of Photoinjected Carriers in a Single GaAs/AlGaAs Quantum Dot

    Full text link
    Photoemission from a single self-organized GaAs/AlGaAs quantum dot (QD) is temporally resolved with picosecond time resolution. The emission spectra consisting of the multiexciton structures are observed to depend on the delay time and the excitation intensity. Quantitative agreement is found between the experimental data and the calculation based on a model which characterizes the successive relaxation of multiexcitons. Through the analysis we can determine the carrier relaxation time as a function of population of photoinjected carriers. Enhancement of the intra-dot carrier relaxation is demonstrated to be due to the carrier-carrier scattering inside a single QD.Comment: 4 pages, 4 figures, to be published in Phys. Rev. B, Rapid

    Erratum to: Concentric Multiple Rings by Droplet Epitaxy: Fabrication and Study of the Morphological Anisotropy

    Get PDF
    We present the Molecular Beam Epitaxy fabrication of complex GaAs/AlGaAs nanostructures by Droplet Epitaxy, characterized by the presence of concentric multiple rings. We propose an innovative experimental procedure that allows the fabrication of individual portions of the structure, controlling their diameter by only changing the substrate temperature. The obtained nanocrystals show a significant anisotropy between [110] and [1–10] crystallographic directions, which can be ascribed to different activation energies for the Ga atoms migration processes

    Bunching visibility for correlated photons from single GaAs quantum dots

    Full text link
    We study photon bunching phenomena associated with biexciton-exciton cascade in single GaAs self-assembled quantum dots. Experiments carried out with a pulsed excitation source show that significant bunching is only detectable at very low excitation, where the typical intensity of photon streams is less than the half of their saturation value. Our findings are qualitatively understood with a model which accounts for Poissonian statistics in the number of excitons, predicting the height of a bunching peak being determined by the inverse of probability of finding more than one exciton.Comment: 6 pages, 6 figs to appear in Phys. Rev.

    Growth Interruption Effect on the Fabrication of GaAs Concentric Multiple Rings by Droplet Epitaxy

    Get PDF
    We present the molecular beam epitaxy fabrication and optical properties of complex GaAs nanostructures by droplet epitaxy: concentric triple quantum rings. A significant difference was found between the volumes of the original droplets and the final GaAs structures. By means of atomic force microscopy and photoluminescence spectroscopy, we found that a thin GaAs quantum well-like layer is developed all over the substrate during the growth interruption times, caused by the migration of Ga in a low As background

    Dysregulated T cell expression of TIM3 in multiple sclerosis

    Get PDF
    T cell immunoglobulin- and mucin domain–containing molecule (TIM)3 is a T helper cell (Th)1–associated cell surface molecule that regulates Th1 responses and promotes tolerance in mice, but its expression and function in human T cells is unknown. We generated 104 T cell clones from the cerebrospinal fluid (CSF) of six patients with multiple sclerosis (MS) (n = 72) and four control subjects (n = 32) and assessed their cytokine profiles and expression levels of TIM3 and related molecules. MS CSF clones secreted higher amounts of interferon (IFN)-γ than did those from control subjects, but paradoxically expressed lower levels of TIM3 and T-bet. Interleukin 12–mediated polarization of CSF clones induced substantially higher amounts of IFN-γ secretion but lower levels of TIM3 in MS clones relative to control clones, demonstrating that TIM3 expression is dysregulated in MS CSF clones. Reduced levels of TIM3 on MS CSF clones correlated with resistance to tolerance induced by costimulatory blockade. Finally, reduction of TIM3 on ex vivo CD4+ T cells using small interfering (si)RNA enhanced proliferation and IFN-γ secretion, directly demonstrating that TIM3 expression on human T cells regulates proliferation and IFN-γ secretion. Failure to up-regulate T cell expression of TIM3 in inflammatory sites may represent a novel, intrinsic defect that contributes to the pathogenesis of MS and other human autoimmune diseases

    Investigation of turbulence in reversed field pinch plasma by using microwave imaging reflectometry

    No full text
    Turbulence in the reversed field pinch (RFP) plasma has been investigated by using the microwave imaging reflectometry in the toroidal pinch experiment RX (TPE-RX). In conventional RFP plasma, the fluctuations are dominated by the intermittent blob-like structures. These structures are accompanied with the generation of magnetic field, the strong turbulence, and high nonlinear coupling among the high and low k modes. The pulsed poloidal current drive operation, which improves the plasma confinement significantly, suppresses the dynamo, the turbulence, and the blob-like structures.This work is supported by the NINS Imaging Science Project (Grant No. NIFS08KEIN0021), SOKENDAI (Grant No. NIFS08GLPP003), and the Budget for Nuclear Research of the Ministry of Education, Culture, Sports, Science and Technology of Japan

    Preformed CD40L Is Stored in Th1, Th2, Th17, and T Follicular Helper Cells as Well as CD4+8− Thymocytes and Invariant NKT Cells but Not in Treg Cells

    Get PDF
    CD40L is essential for the development of adaptive immune responses. It is generally thought that CD40L expression in CD4+ T cells is regulated transcriptionally and made from new mRNA following antigen recognition. However, imaging studies show that the majority of cognate interactions between effector CD4+ T cells and APCs in vivo are too short to allow de novo CD40L synthesis. We previously showed that Th1 effector and memory cells store preformed CD40L (pCD40L) in lysosomal compartments and mobilize it onto the plasma membrane immediately after antigenic stimulation, suggesting that primed CD4+ T cells may use pCD40L to activate APCs during brief encounters. Indeed, our recent study showed that pCD40L is sufficient to mediate selective activation of cognate B cells and trigger DC activation in vitro. In this study, we show that pCD40L is present in Th1 and follicular helper T cells developed during infection with lymphocytic choriomeningitis virus, Th2 cells in the airway of asthmatic mice, and Th17 cells from the CNS of animals with experimental autoimmune encephalitis (EAE). pCD40L is nearly absent in both natural and induced Treg cells, even in the presence of intense inflammation such as occurs in EAE. We also found pCD40L expression in CD4 single positive thymocytes and invariant NKT cells. Together, these results suggest that pCD40L may function in T cell development as well as an unexpectedly broad spectrum of innate and adaptive immune responses, while its expression in Treg cells is repressed to avoid compromising their suppressive activity

    Structure analysis of the Ga-stabilized GaAs(001)-c(8x2) surface at high temperatures

    Full text link
    Structure of the Ga-stabilized GaAs(001)-c(8x2) surface has been studied using rocking-curve analysis of reflection high-energy electron diffraction (RHEED). The c(8x2) structure emerges at temperatures higher than 600C, but is unstable with respect to the change to the (2x6)/(3x6) structure at lower temperatures. Our RHEED rocking-curve analysis at high temperatures revealed that the c(8x2) surface has the structure which is basically the same as that recently proposed by Kumpf et al. [Phys. Rev. Lett. 86, 3586 (2001)]. We found that the surface atomic configurations are locally fluctuated at high temperatures without disturbing the c(8x2) periodicity.Comment: 14 pages, 4 figures, 1 tabl
    • …
    corecore