22 research outputs found

    Entanglement, Einstein-Podolsky-Rosen steering and cryptographical applications

    Get PDF
    This PhD Dissertation collects results of my own work on the topic of continuous variable (CV) quantum teleportation, which is one of the most important applications of quantum entanglement, as well as on the understanding, quantification, detection, and applications of a type of quantum correlations known as Einstein-Podolsky-Rosen (EPR) steering, for both bipartite and multipartite systems and with a main focus on CV systems. For the first results, we examine and compare two fundamentally different teleportation schemes; the well-known continuous variable scheme of Vaidman, Braunstein and Kimble, and a recently proposed hybrid scheme by Andersen and Ralph. We analyse the teleportation of ensembles of arbitrary pure single-mode Gaussian states using these schemes and compare their performance against classical strategies that utilize no entanglement (benchmarks). Our analysis brings into question any advantage due to non-Gaussianity for quantum teleportation of Gaussian states. For the second part of the results, we study bipartite EPR-steering. We propose a novel powerful method to detect steering in quantum systems of any dimension in a systematic and hierarchical way. Our method includes previous results of the literature as special cases on one hand, and goes beyond them on the other. We proceed to the quantification of steering-type correlations, and introduce a measure of steering for arbitrary bipartite Gaussian states, prove many useful properties, and provide with an operational interpretation of the proposed measure in terms of the key rate in one-sided device independent quantum key distribution. Finally, we show how the Gaussian steering measure gives a lower bound to a more general quantifier of which Gaussian states are proven to be extremal. We proceed to the study of multipartite steering, and derive laws for the distribution of Gaussian steering among different parties in multipartite Gaussian states. We define an indicator of collective steering-type correlations, which is interpreted operationally in terms of the guaranteed secret key rate in the multi-party cryptographic task of quantum secret sharing. The final results look at the cryptographical task of quantum secret sharing, whose security has remained unproven almost two decades after its original conception. By utilizing intuition and ideas from steering, we manage to establish for the first time an unconditional security proof for CV entanglement-based quantum secret sharing schemes, and demonstrate their practical feasibility. Our results establish quantum secret sharing as a viable and practically relevant primitive for quantum communication technologies

    Entanglement, Einstein-Podolsky-Rosen steering and cryptographical applications

    Get PDF
    This PhD Dissertation collects results of my own work on the topic of continuous variable (CV) quantum teleportation, which is one of the most important applications of quantum entanglement, as well as on the understanding, quantification, detection, and applications of a type of quantum correlations known as Einstein-Podolsky-Rosen (EPR) steering, for both bipartite and multipartite systems and with a main focus on CV systems. For the first results, we examine and compare two fundamentally different teleportation schemes; the well-known continuous variable scheme of Vaidman, Braunstein and Kimble, and a recently proposed hybrid scheme by Andersen and Ralph. We analyse the teleportation of ensembles of arbitrary pure single-mode Gaussian states using these schemes and compare their performance against classical strategies that utilize no entanglement (benchmarks). Our analysis brings into question any advantage due to non-Gaussianity for quantum teleportation of Gaussian states. For the second part of the results, we study bipartite EPR-steering. We propose a novel powerful method to detect steering in quantum systems of any dimension in a systematic and hierarchical way. Our method includes previous results of the literature as special cases on one hand, and goes beyond them on the other. We proceed to the quantification of steering-type correlations, and introduce a measure of steering for arbitrary bipartite Gaussian states, prove many useful properties, and provide with an operational interpretation of the proposed measure in terms of the key rate in one-sided device independent quantum key distribution. Finally, we show how the Gaussian steering measure gives a lower bound to a more general quantifier of which Gaussian states are proven to be extremal. We proceed to the study of multipartite steering, and derive laws for the distribution of Gaussian steering among different parties in multipartite Gaussian states. We define an indicator of collective steering-type correlations, which is interpreted operationally in terms of the guaranteed secret key rate in the multi-party cryptographic task of quantum secret sharing. The final results look at the cryptographical task of quantum secret sharing, whose security has remained unproven almost two decades after its original conception. By utilizing intuition and ideas from steering, we manage to establish for the first time an unconditional security proof for CV entanglement-based quantum secret sharing schemes, and demonstrate their practical feasibility. Our results establish quantum secret sharing as a viable and practically relevant primitive for quantum communication technologies

    Continuous-variable versus hybrid schemes for quantum teleportation of Gaussian states

    Get PDF
    In this paper, we examine and compare two fundamentally different teleportation schemes: the well-known continuous-variable scheme of Vaidman, Braunstein, and Kimble (VBK) and a recently proposed hybrid scheme by Andersen and Ralph (AR). We analyze the teleportation of ensembles of arbitrary pure single-mode Gaussian states using these schemes and see how they fare against the optimal measure-and-prepare strategies—the benchmarks. In the VBK case, we allow for nonunit gain tuning and additionally consider a class of non-Gaussian resources in order to optimize performance. The results suggest that the AR scheme may likely be a more suitable candidate for beating the benchmarks in the teleportation of squeezing, capable of achieving this for moderate resources in comparison to the VBK scheme. Moreover, our quantification of resources, whereby different protocols are compared at fixed values of the entanglement entropy or the mean energy of the resource states, brings into question any advantage due to non-Gaussianity for quantum teleportation of Gaussian states

    Evaluation of a blockchain-enabled resource management mechanism for NGNs

    Full text link
    A new era in ICT has begun with the evolution of Next Generation Networks (NGNs) and the development of human-centric applications. Ultra-low latency, high throughput, and high availability are a few of the main characteristics of modern networks. Network Providers (NPs) are responsible for the development and maintenance of network infrastructures ready to support the most demanding applications that should be available not only in urban areas but in every corner of the earth. The NPs must collaborate to offer high-quality services and keep their overall cost low. The collaboration among competitive entities can in principle be regulated by a trusted 3rd party or by a distributed approach/technology which can guarantee integrity, security, and trust. This paper examines the use of blockchain technology for resource management and negotiation among NPs and presents the results of experiments conducted in a dedicated real testbed. The implementation of the resource management mechanism is described in a Smart Contract (SC) and the testbeds use the Raft and the IBFT consensus mechanisms respectively. The goal of this paper is two-fold: to assess its performance in terms of transaction throughput and latency so that we can assess the granularity at which this solution can operate (e.g. support resource re-allocation among NPs on micro-service level or not) and define implementation-specific parameters like the consensus mechanism that is the most suitable for this use case based on performance metrics

    Investigation of Information Dissemination Design Criteria in Large-scale Network Environments

    Get PDF
    Abstract-The design of efficient information dissemination mechanism is a challenging problem in large-scale network with respect to the number of messages and termination time. In this paper, advertisement and searching -the two basic ingredients of information dissemination -are investigated and certain criteria are proposed with respect to the correctness, promptness and fairness of the approach. Based on the complementarity of both advertisement and searching, the aforementioned criteria can be satisfied under certain conditions, which form the baseline of design principles for efficient information dissemination, as analytically -also using numerical results -is investigated here

    Multipartite Gaussian steering: monogamy constraints and quantum cryptography applications

    Get PDF
    We derive laws for the distribution of quantum steering among different parties in multipartite Gaussian states under Gaussian measurements. We prove that a monogamy relation akin to the generalized Coffman-Kundu-Wootters inequality holds quantitatively for a recently introduced measure of Gaussian steering. We then define the residual Gaussian steering, stemming from the monogamy inequality, as an indicator of collective steering-type correlations. For pure three-mode Gaussian states, the residual acts as a quantifier of genuine multipartite steering, and is interpreted operationally in terms of the guaranteed key rate in the task of secure quantum secret sharing. Optimal resource states for the latter protocol are identified, and their possible experimental implementation discussed. Our results pin down the role of multipartite steering for quantum communication

    Unconditional security of entanglement-based continuous-variable quantum secret sharing

    Get PDF
    The need for secrecy and security is essential in communication. Secret sharing is a conventional protocol to distribute a secret message to a group of parties, who cannot access it individually but need to cooperate in order to decode it. While several variants of this protocol have been investigated, including realizations using quantum systems, the security of quantum secret sharing schemes still remains unproven almost two decades after their original conception. Here we establish an unconditional security proof for entanglement-based continuous-variable quantum secret sharing schemes, in the limit of asymptotic keys and for an arbitrary number of players. We tackle the problem by resorting to the recently developed one-sided device-independent approach to quantum key distribution. We demonstrate theoretically the feasibility of our scheme, which can be implemented by Gaussian states and homodyne measurements, with no need for ideal single-photon sources or quantum memories. Our results contribute to validating quantum secret sharing as a viable primitive for quantum technologies

    Quantification of Gaussian quantum steering

    Get PDF
    Einstein-Podolsky-Rosen steering incarnates a useful nonclassical correlation which sits between entanglement and Bell nonlocality. While a number of qualitative steering criteria exist, very little has been achieved for what concerns quantifying steerability. We introduce a computable measure of steering for arbitrary bipartite Gaussian states of continuous variable systems. For two mode Gaussian states, the measure reduces to a form of coherent information, which is proven never to exceed entanglement, and to reduce to it on pure states. We provide an operational connection between our measure and the key rate in one-sided device-independent quantum key distribution. We further prove that Peres’ conjecture holds in its stronger form within the fully Gaussian regime: namely, steering bound entangled Gaussian states by Gaussian measurements is impossible

    Hierarchy of steering criteria based on moments for all bipartite quantum systems

    Get PDF
    Einstein-Podolsky-Rosen steering is a manifestation of quantum correlations exhibited by quantum systems that allows for entanglement certification when one of the subsystems is not characterized. Detecting the steerability of quantum states is essential to assess their suitability for quantum information protocols with partially trusted devices. We provide a hierarchy of sufficient conditions for the steerability of bipartite quantum states of any dimension, including continuous variable states. Previously known steering criteria are recovered as special cases of our approach. The proposed method allows us to derive optimal steering witnesses for arbitrary families of quantum states and provides a systematic framework to analytically derive nonlinear steering criteria. We discuss relevant examples and, in particular, provide an optimal steering witness for a lossy single-photon Bell state; the witness can be implemented just by linear optics and homodyne detection and detects steering with a higher loss tolerance than any other known method. Our approach is readily applicable to multipartite steering detection and to the characterization of joint measurability
    corecore