25 research outputs found

    Nocturnal Hypersalivation Caused by Distigmine Bromide in a Patient with Multiple System Atrophy

    No full text

    Bone Marrow-Derived NCS-01 Cells Advance a Novel Cell-Based Therapy for Stroke

    No full text
    Human mesenchymal stem cells have been explored for their application in cell-based therapies targeting stroke. Identifying cell lines that stand as safe, accessible, and effective for transplantation, while optimizing dosage, timing, and method of delivery remain critical translational steps towards clinical trials. Preclinical studies using bone marrow-derived NCS-01 cells show the cells’ ability to confer functional recovery in ischemic stroke. Coculturing primary rat cortical cells or human neural progenitor cells with NCS-01 cells protects against oxygen-glucose deprivation. In the rodent middle cerebral artery occlusion model, intracarotid artery administration of NCS-01 cells demonstrate greater efficacy than other mesenchymal stem cells (MSCs) at improving motor and neurological function, as well as reducing infarct volume and peri-infarct cell loss. NCS-01 cells secrete therapeutic factors, including basic fibroblast growth factor and interleukin-6, while also demonstrating a potentially novel mechanism of extending filopodia towards the site of injury. In this review, we discuss recent preclinical advancements using in vitro and in vivo ischemia models that support the transplantation of NCS-01 in human stroke trials. These results, coupled with the recommendations put forth by the consortium of Stem cell Therapeutics as an Emerging Paradigm for Stroke (STEPS), highlight a framework for conducting preclinical research with the ultimate goal of initiating clinical trials

    The sera obtained from the patients with t-CIDP, MADSAM and DADS disrupted the BNB.

    No full text
    <p>(A) – (D) Effects of the sera obtained from patients with three different phenotypes of chronic inflammatory demyelinating polyneuropathy (CIDP) on the protein levels of claudin-5 and occludin in the FH-BNBs, as determined using a Western blot analysis. The cells were exposed to sera from either patients with typical CIDP (t-CIDP) (A), multifocal acquired demyelinating sensory and motor neuropathy (MADSAM) (B) or distal acquired demyelinating symmetric neuropathy (DADS) (C) or healthy volunteers (D). (E) The sera obtained from the patients with t-CIDP, MADSAM neuropathy and DADS neuropathy decreased the protein ratio of claudin-5 to actin proteins in the FH-BNBs compared to that observed following exposure to the sera from the healthy volunteers. The decrease in the claudin-5 levels in the FH-BNBs was greater after incubation with the sera obtained from the t-CIDP patients than after that with the sera from the patients with MADSAM and DADS. (F) There were no significant differences between the patients with the three different phenotypes of CIDP and the healthy controls regarding the occludin protein levels in the FH-BNBs. (G) The effects of the sera on the transendothelial electrical resistance (TEER) values in the FH-BNBs were also evaluated. Adding sera obtained from the patients with t-CIDP, MADSAM neuropathy or DADS neuropathy resulted in decreased TEER values in the FH-BNBs in comparison with that observed in the cells treated with the sera obtained from the healthy volunteers. Markedly decreased TEER values in FH-BNBs were also observed in the FH-BNBs following incubation with the sera obtained from the t-CIDP patients compared to that noted in the cells incubated with sera from patients with MADSAM or DADS neuropathy. The TEER values were decreased following exposure to the sera obtained from the patients with DADS neuropathy compared to that observed after exposure to the sera obtained from the patients with MADSAM neuropathy. The bars indicate the mean level in each group. Control: non-conditioned DMEM containing 20% FBS. t-CIDP: conditioned medium with 10% sera obtained from patients with t-CIDP diluted with non-conditioned DMEM containing 10% FBS. MADSAM: conditioned medium with 10% sera obtained from patients with MADSAM diluted with non-conditioned DMEM containing 10% FBS. DADS: conditioned medium with 10% sera obtained from patients with DADS diluted with non-conditioned DMEM containing 10% FBS. Normal: conditioned medium with 10% sera obtained from a healthy volunteer diluted with non-conditioned medium of DMEM containing 10% FBS.</p

    Correlation between the electrophysiological findings and BNB disruption in the patients with CIDP.

    No full text
    <p>Associations between the claudin-5 to actin protein ratios and the TEER values in the FH-BNBs following exposure to sera and the electrophysiological findings of the median nerve, including the distal nerve latency (A), conduction velocity (B), compound muscle action potential (CMAP) (C), terminal latency index (TLI index) (D) and presence of conduction block (E) or abnormal temporal dispersion (F) in the patients with CIDP. A lower TEER value was highly associated with slower motor nerve conduction and the presence of abnormal temporal dispersion.</p

    Severity and Patterns of Blood-Nerve Barrier Breakdown in Patients with Chronic Inflammatory Demyelinating Polyradiculoneuropathy: Correlations with Clinical Subtypes - Table 1

    No full text
    <p>*t-CIDP vs MADSAM, **t-CIDP vs DADS, ***MADSAM vs DADS.</p><p>Data are expressed as mean (±SD), median [range] or percent {number}.</p><p>t-CIDP, typical chronic inflammatory demyelinating polyradiculoneuropathy; MADSAM, multifocal acquired demyelinating sensory and motor neuropathy; DADS, distal acquired demyelinating symmetric neuropathy, IVIg: Intravenous immunoglobulin, MRC: Medical Research Council, CSF: cerebrospinal fluid, CMAP: compound muscle action potential.</p

    Associations between the clinical findings and BNB malfunction in the patients with CIDP.

    No full text
    <p>Correlations between the claudin-5 to actin protein ratios and the TEER values in the FH-BNBs following exposure to sera and the clinical parameters in the patients with CIDP. Associations between the claudin-5 to actin protein ratios and TEER values and the Hughes grade (A), duration of disease from onset (B), total Medical Research Council (MRC) scores for four muscle groups (deltoid, wrist extensor, iliopsoas, and tibialis anterior muscles) (C), MRC score for the iliopsoas muscle (D) and response to treatment, including intravenous immunoglobulin (IVIg) and corticosteroids (E). A lower ratio of claudin-5 to actin proteins was significantly associated with a higher Hughes grade, while a lower TEER value significantly correlated with a higher Hughes grade and lower MRC score.</p

    Translating Intracarotid Artery Transplantation of Bone Marrow-derived NCS-01 Cells for Ischemic Stroke: Behavioral and Histological Readouts and Mechanistic Insights into Stem Cell Therapy

    No full text
    The present study used in vitro and in vivo stroke models to demonstrate the safety, efficacy, and mechanism of action of adult human bone marrow-derived NCS-01 cells. Coculture with NCS-01 cells protected primary rat cortical cells or human neural progenitor cells from oxygen glucose deprivation. Adult rats that were subjected to middle cerebral artery occlusion, transiently or permanently, and subsequently received intracarotid artery or intravenous transplants of NCS-01 cells displayed dose-dependent improvements in motor and neurological behaviors, and reductions in infarct area and peri-infarct cell loss, much better than intravenous administration. The optimal dose was 7.5 × 106 cells/mL when delivered via the intracarotid artery within 3 days poststroke, although therapeutic effects persisted even when administered at 1 week after stroke. Compared with other mesenchymal stem cells, NCS-01 cells ameliorated both the structural and functional deficits after stroke through a broad therapeutic window. NCS-01 cells secreted therapeutic molecules, such as basic fibroblast growth factor and interleukin-6, but equally importantly we observed for the first time the formation of filopodia by NCS-01 cells under stroke conditions, characterized by cadherin-positive processes extending from the stem cells toward the ischemic cells. Collectively, the present efficacy readouts and the novel filopodia-mediated mechanism of action provide solid lab-to-clinic evidence supporting the use of NCS-01 cells for treatment of stroke in the clinical setting
    corecore