12 research outputs found

    Circulating Naturally-Occurring Anticoagulants before Treatment and after Recovery from SARS-CoV-2 Infection in Ghana

    Get PDF
    Background: Disturbance in naturally-occurring anticoagulants may contribute to the hypercoagulable state in COVID-19. This study determined the plasma antigen levels of protein C (PC), protein S (PS), antithrombin-III (AT-III), and thrombomodulin (TM) before treatment and after recovery from COVID-19. Materials and Methods: This cross-sectional study, conducted from February to August 2022 at Kumasi South Hospital, recruited sixty-five RT-PCR-confirmed COVID-19 participants. A venous blood sample was taken for full blood count (FBC) analysis using a 3-part fully automated haematology analyzer, and PC, PS, AT-III, and TM antigen levels measured using ELISA. The data were analyzed using SPSS version 26.0. P<0.05 was considered statistically significant. Results: Severe COVID-19 participants had relatively lower haemoglobin (p<0.001), RBC (p<0.001), HCT% (p<0.001) and platelets (p<0.001), but higher RDW-CV% (p=0.013), WBC (p<0.001), and absolute lymphocyte counts (p<0.001) compared to those with the non-severe form of the disease. The overall prevalence of anaemia among the participants was 58.5%, and 32 (84.2%) and 6 (15.8%) of the anaemic participants had mild and moderate anaemia respectively. Protein C (p<0.001), PS (p<0.001) and ATIII (p<0.001) levels were lower among the severe COVID-19 participants than in the non-severe group. But severe COVID-19 group had higher TM levels (p<0.001) than the non-severe group. Again, participants had higher haemoglobin (p<0.001), RBC (p<0.001), HCT% (p=0.049), absolute neutrophil count (p<0.001) and platelets (p<0.001) after recovery from COVID-19 than the values on admission. Additionally, after recovery, participants had higher levels of PC (p<0.001), PS (p<0.001), and ATIII (p<0.001), but reduced TM (p<0.001). Conclusion: Severe COVID-19 patients had higher PC, PS, and AT-III, but lower TM levels. The changes in circulating anticoagulants may contribute to the hypercoagulable state of COVID-19. Blood cell indices are negatively affected during COVID-19. Complete recovery from the SARS-CoV-2 infection normalised the haematological indices. Assessment of naturally-occurring anticoagulants and the provision of anticoagulants are recommended in the management of COVID-19.   Doi: 10.28991/SciMedJ-2022-04-04-01 Full Text: PD

    Unexplained district variability in under-five mortality.

    No full text
    <p>(A) Spatially structured random effects [exp(<i>U</i>)] and (B) unstructured random effects [exp(<i>V</i>)] of unexplained district variability in under-five mortality. Random effects < 1 for a district represents a reduction in under-five mortality, and random effects > 1 represents an increase.</p

    Risk ratios and 95% credible intervals (2.5th and 97.5th percentiles of the posterior distributions of effect size parameters from the Bayesian model) from multivariate analysis of the association of under-five mortality with its social and environmental risk factors for 2000, 2010, and the change between 2000 and 2010.

    No full text
    <p>The magnitude of the effect size for each variable represents the proportional change (decrease or increase) in 5q0 for a 10% higher prevalence of that variable (over space in a single census year or change over time between censuses), with the 10% shift coming from the reference variable. The reference variables were wood (for cooking fuel), unimproved sanitation, unimproved drinking water, no education (for maternal and paternal education), and living in rural areas.</p

    Change in under-five mortality (deaths per 1,000 live births) by district from 2000 to 2010.

    No full text
    <p>(A) Under-five mortality (deaths per 1,000 live births) in 2000 versus 2010. (B) Tukey mean-difference plot of under-five mortality (deaths per 1,000 live births) in 2000 and 2010. (C) Percent change in under-five mortality by district from 2000 to 2010.</p
    corecore