2 research outputs found

    A beryllium-10 chronology of late-glacial moraines in the upper Rakaia valley, Southern Alps, New Zealand supports Southern- Hemisphere warming during the Younger Dryas

    Get PDF
    Interhemispheric differences in the timing of pauses or reversals in the temperature rise at the end of the last ice age can help to clarify the mechanisms that influence glacial terminations. Our beryllium-10 (10Be) surface-exposure chronology for the moraines of the upper Rakaia valley of New Zealand's Southern Alps, combined with glaciological modeling, show that late-glacial temperature change in the atmosphere over the Southern Alps exhibited an Antarctic-like pattern. During the Antarctic Cold Reversal, the upper Rakaia glacier built two well-defined, closely-spaced moraines on Reischek knob at 13,900 ± 120 [1σ; ± 310 yrs when including a 2.1% production-rate (PR) uncertainty] and 13,140 ± 250 (±370) yrs ago, in positions consistent with mean annual temperature approximately 2 °C cooler than modern values. The formation of distinct, widely-spaced moraines at 12,140 ± 200 (±320) and 11,620 ± 160 (±290) yrs ago on Meins Knob, 2 km up-valley from the Reischek knob moraines, indicates that the glacier thinned by ∼250 m during Heinrich Stadial 0 (HS 0, coeval with the Younger Dryas 12,900 to 11,600 yrs ago). The glacier-inferred temperature rise in the upper Rakaia valley during HS 0 was about 1 °C. Because a similar pattern is documented by well-dated glacial geomorphologic records from the Andes of South America, the implication is that this late-glacial atmospheric climate signal extended from 79°S north to at least 36°S, and thus was a major feature of Southern Hemisphere paleoclimate during the last glacial termination

    Warming and glacier recession in the Rakaia valley, Southern Alps of New Zealand, during Heinrich Stadial 1

    Get PDF
    The termination of the last ice age featured a major reconfiguration of Earthʼs climate and cryosphere, yet the underlying causes of these massive changes continue to be debated. Documenting the spatial and temporal variations of atmospheric temperature during deglaciation can help discriminate among potential drivers. Here, we present a 10Be surface-exposure chronology and glaciological reconstruction of ice recession following the Last Glacial Maximum (LGM) in the Rakaia valley, Southern Alps of New Zealand. Innermost LGM moraines at Big Ben have an age of 17,840 ± 240 yrs, whereas ice-marginal moraines or ice-molded bedrock surfaces at distances up-valley from Big Ben of 12.5 km (Lake Coleridge), ∼25 km (Castle Hill), ∼28 km (Double Hill), ∼43 km (Prospect Hill), and ∼58 km (Reischek knob) have ages of 17,020 ± 70 yrs, 17,100 ± 110 yrs, 16,960 ± 370 yrs, 16,250 ± 340 yrs, and 15,660 ± 160 yrs, respectively. These results indicate extensive recession of the Rakaia glacier, which we attribute primarily to the effects of climatic warming. In conjunction with geomorphological maps and a glaciological reconstruction for the Rakaia valley, we use our chronology to infer timing and magnitude of past atmospheric temperature changes. Compared to an overall temperature rise of ∼4.65 °C between the end of the LGM and the start of the Holocene, the glacier recession between ∼17,840 and ∼15,660 yrs ago is attributable to a net temperature increase of ∼4.0 °C (from −6.25 to −2.25 °C), accounting for ∼86% of the overall warming. Approximately 3.75 °C (∼70%) of the warming occurred between ∼17,840 and ∼16,250 yrs ago, with a further 0.75 °C (∼16%) increase between ∼16,250 and ∼15,660 yrs ago. A sustained southward shift of the Subtropical Front (STF) south of Australia between ∼17,800 and ∼16,000 yrs ago coincides with the warming over the Rakaia valley, and suggests a close link between Southern Ocean frontal boundary positions and southern mid-latitude climate. Most of the deglacial warming in the Southern Alps occurred during the early part of Heinrich Stadial 1 (HS1) of the North Atlantic region. Because the STF is associated with the position of the westerly wind belt, our findings support the concept that a southward shift of Earthʼs wind belts accompanied the early part of HS1 cooling in the North Atlantic, leading to warming and deglaciation in southern middle latitudes
    corecore