202 research outputs found

    Identifying the optimal use of CTCs in the early staging phase of breast cancer

    Get PDF
    Objectives: Circulating tumour cells (CTCs) in the blood can give important information about the prognosis and treatment options for cancer patients. Methods like cell-search are not sensitive enough because the blood samples are small (7,5 mL). Currently a technique is developed which can separate CTCs from the whole blood and is called the CTC Trap. This study addresses the potential impact of implementing the CTC Trap in addition to currently used imaging techniques in early staging of primary stage I-III breast cancer in women. Methods: The early staging process has been identified using the Dutch breast cancer guideline. This process is displayed in a decision tree. Three points in this process have been identified as possible implementation options for the CTC Trap. A simulation model has been built in Excel to simulate the cost-effectiveness of implementing the CTC Trap at these three different points. Results: Potentially relevant points for the CTC trap are: 1) following negative sentinel lymph node procedure to test for micro metastases, 2) following negative result of initial MRI to test for (micro-) metastases, 3) following negative results of further imaging. Usual care resulted in an average survival of 2,42 years, a 3-year survival of 93,71%, 1,51 QALYs and a cost of € 992,56. When implemented at all 3 implementation points simultaneously CTC Trap resulted in an average survival of 2,84 years, a 3-year survival of 97,46 %, 1,84 QALYS and a total cost of € 6.035,45. Conclusions: CTCs clearly have the potential to improve overall survival. Use of CTCs can potentially improve survival with 0,42 years and improve QALYs with 0,34. Costs do increase at all options but from a health economic perspective it is most valuable to implement CTC Trap in option 1) following negative sentinel lymph node procedure to test for (micro-) metastases

    A scoping review of metamodeling applications and opportunities for advanced health economic analyses

    Get PDF
    Introduction: Metamodels, also known as meta-models, surrogate models, or emulators, are used in several fields of research to negate runtime issues with analyzing computational demanding simulation models. This study introduces metamodeling and presents results of a review on metamodeling applications in health economics. Areas covered: A scoping review was performed to identify studies that applied metamodeling methods in a health economic context. After search and selection, 13 publications were found to employ metamodeling methods in health economics. Metamodels were used to perform value of information analysis (n = 5, 38%), deterministic sensitivity analysis (n = 4, 31%), model calibration (n = 1, 8%), probabilistic sensitivity analysis (n = 1), or optimization (n = 1, 8%). One study was found to extrapolate a simulation model to other countries (n = 1, 8%). Applied metamodeling techniques varied considerably between studies, with linear regression being most frequently applied (n = 7, 54%). Expert commentary: Although it has great potential to enable computational demanding analyses of health economic models, metamodeling in health economics is still in its infancy, as illustrated by the limited number of applications and the relatively simple metamodeling methods applied. Comprehensive guidance specific to health economics is needed to provide modelers with the information and tools needed to utilize the full potential of metamodels

    PRM65 A Minimal Information Decision-Analytic Approach to Early HTA of Diagnostic Tests

    Get PDF

    Communicating Uncertainty in Economic Evaluations:Verifying Optimal Strategies

    Get PDF
    Background. In cost-effectiveness analysis (CEA), it is common to compare a single, new intervention with 1 or more existing interventions representing current practice ignoring other, unrelated interventions. Sectoral CEAs, in contrast, take a perspective in which the costs and effectiveness of all possible interventions within a certain disease area or health care sector are compared to maximize health in a society given resource constraints. Stochastic league tables (SLT) have been developed to represent uncertainty in sectoral CEAs but have 2 shortcomings: 1) the probabilities reflect inclusion of individual interventions and not strategies and 2) data on robustness are lacking. The authors developed an extension of SLT that addresses these shortcomings. Methods. Analogous to non-probabilistic MAXIMIN decision rules, the uncertainty of the performance of strategies in sectoral CEAs may be judged with respect to worst possible outcomes, in terms of health effects obtainable within a given budget. Therefore, the authors assessed robustness of strategies likely to be optimal by performing optimization separately on all samples and on samples yielding worse than expected health benefits. The approach was tested on 2 examples, 1 with independent and 1 with correlated cost and effect data. Results. The method was applicable to the original SLT example and to a new example and provided clear and easily interpretable results. Identification of interventions with robust performance as well as the best performing strategies was straightforward. Furthermore, the robustness of strategies was assessed with a MAXIMIN decision rule. Conclusion. The SLT extension improves the comprehensibility and extends the usefulness of outcomes of SLT for decision makers. Its use is recommended whenever an SLT approach is considered

    Data reconciliation of immersive heart inspection

    Get PDF
    IVUS images are complicated medical datasets suffering from some artifacts caused by the data acquisition method of immersive heart inspection. Data reconciliation, which removes tracing and tracking uncertainties of these datasets, is an important step for the medical application of remodeling the arteries in virtual reality to aid diagnosing and treating heart diseases. This paper provides an empirical data reconciliation method, which fuses the features of the coronary longitudinal movement with motion compensation model. It explains the distortion of the data set well and provides a method to analyze and reconcile the dataset

    PRM113 - Timed Automata Modeling of The Personalized Treatment Decisions In Metastatic Castration Resistant Prostate Cancer

    Get PDF
    Objectives\ud The Timed Automata modeling paradigm has emerged from Computer Science as a mature tool for the functional analysis and performance evaluation of timed distributed systems. This study is a first exploration of the suitability of Timed Automata for health economic modeling, using a case study on personalized treatment for metastatic Castration Resistant Prostate Cancer (mCRPC).\ud \ud Methods\ud The treatment process has been modeled by creating several independent timed automata, where an automaton represents a patient, a physician, a test, or a treatment/testing guideline schedule. These automata interact via message passing and are fully parameterized with quantitative information. Messages can be passed, asynchronously, from one automaton to one or more other automata, at any point in time, thereby triggering events and decisions in the treatment process. In the automata time is continuous, and both QALYs and costs can be incorporated using (assignable) local clocks. Uncertainty can be modeled using probabilities and timing intervals that can be uniformly or exponentially distributed. Software for building timed automata is freely available for academic use and includes procedures for statistical model checking (SMC) to validate the (internal) behavior and results of the model.\ud \ud Results\ud In several days a Timed Automata model has been produced that is compositional, easy to understand and easy to update. The behavior and results of the model have been assessed using the SMC tool. Actual results for the mCRPC case study obtained from the Timed Automata model are compared with results of a Discrete Event Simulation model in a separate study.\ud \ud Conclusions\ud The Timed Automata paradigm can be successfully applied to evaluate the potential benefits of a personalized treatment process of mCRPC. The compositional nature of the resulting model provides a good separation of all relevant components. This leads to models that are easy to formulate, validate, understand, maintain and update
    • …
    corecore