13 research outputs found
The use of peptides, aptamers, and variable domains of heavy chain only antibodies in tissue engineering and regenerative medicine
Over the years, much research has been focused on the use of small molecules such as peptides or aptamers or more recently on the use of variable antigen-binding domain of heavy chain only antibodies in the field of tissue engineering and regenerative medicine. The use of these molecules originated as an alternative for the larger conventional antibodies, of which most drawbacks are derived from their size and complex structure. In the field of tissue engineering and regenerative medicine, biological functionalities are often conjugated to biomaterials in order to (re-)create an in vivo like situation, especially when bioinert biomaterials are used. Those biomaterials are functionalized with these functionalities for instance for the purpose of cell attachment or cell targeting for targeted drug delivery but also for local enrichment or blocking of ligands such as growth factors or cytokines on the biomaterial surface. In this review, we further refer to peptides, aptamers, and variable antigen-binding domain of heavy chain only antibodies as biological functionalities. Here, we compare these biological functionalities within the field of tissue engineering and regenerative medicine and give an overview of recent work in which these biological functionalities have been explored. We focus on the previously mentioned purposes of the biological functionalities. We will compare structural differences, possible modifications and (chemical) conjugation strategies. In addition, we will provide an overview of biologicals that are, or have been, involved in clinical trials. Finally, we will highlight the challenges of each of these biologicals. Statement of significance: In the field of tissue engineering there is broad application of functionalized biomaterials for cell attachment, targeted drug delivery and local enrichment or blocking of growth factors. This was previously mostly done via conventional antibodies, but their large size and complex structure impose various challenges with respect of retaining biological functionality. Peptides, aptamers and VHHs may provide an alternative solution for the use of conventional antibodies. This review discusses the use of these molecules for biological functionalization of biomaterials. For each of the molecules, their characteristics, conjugation possibilities and current use in research and clinical trials is described. Furthermore, this review sets out the benefits and challenges of using these types of molecules for different fields of application.</p
High throughput surface plasmon resonance imaging method for clinical detection of presence and strength of binding of IgM, IgG and IgA antibodies against SARS-CoV-2 during CoViD-19 infection
Surface Plasmon Resonance imaging (SPRi) was used to determine the presence and strength of binding of IgG, IgM and IgA against the Receptor Binding Domain (RBD) of SARS-CoV-2 in sera of 102 CoViD-19 and non-CoViD-19 patients. The SPRi assay simultaneously measures the antibody isotype levels and the strength of binding to the RBD of ultimate 384 patient samples in one run. It turns out that during the course of the disease, the IgG levels and strength of binding increased while generally the IgM and IgA levels go down. Recovered patients all show high strength of binding of the IgG type to the RBD protein. The anti-RBD immunoglobulins SPRi assay provides additional insights in the immune status of patients recovering from CoViD-19. This new high throughput method can be applied for the assessment of the quality of the immune reaction of healthy individuals to SARS-CoV-2 and its mutants in vaccination programs.•Surface Plasmon Resonance imaging is an unprecedented technology for high throughput screening of antibody profiling of CoViD19 patients.•Fingerprinting of isotypes IgM, IgG and IgA can be performed for 384 patients in one run.•An affinity maturation effect was shown for patients recovering from CoViD19
Microencapsulated stem cells reduce cartilage damage in a material dependent manner following minimally invasive intra-articular injection in an OA rat model
Osteoarthritis (OA) is a degenerative disease of the joints for which no curative treatment exists. Intra-articular injection of stem cells is explored as a regenerative approach, but rapid clearance of cells from the injection site limits the therapeutic outcome. Microencapsulation of mesenchymal stem cells (MSCs) can extend the retention time of MSCs, but the outcomes of the few studies currently performed are conflicting. We hypothesize that the composition of the micromaterial's shell plays a deciding factor in the treatment outcome of intra-articular MSC injection. To this end, we microencapsulate MSCs using droplet microfluidic generators in flow-focus mode using various polymers and polymer concentrations. We demonstrate that polymer composition and concentration potently alter the metabolic activity as well as the secretome of MSCs. Moreover, while microencapsulation consistently prolongs the retention time of MSC injected in rat joints, distinct biodistribution within the joint is demonstrated for the various microgel formulations. Furthermore, intra-articular injections of pristine and microencapsulated MSC in OA rat joints show a strong material-dependent effect on the reduction of cartilage degradation and matrix loss. Collectively, this study highlights that micromaterial composition and concentration are key deciding factors for the therapeutic outcome of intra-articular injections of microencapsulated stem cells to treat degenerative joint diseases
Small antibodies with a big opportunity: The variable domain of the heavy chain only antibody and its potential as disease modifying osteoarthritic drug
Osteoarthritis (OA) is the most common joint disorder worldwide and its incidence is still increasing. It is a degenerative disease that is mainly characterized by progressive loss of articular cartilage, mild signs of synovial inflammation and typical changes in the bone. Currently, no curative treatment for OA exists which shows the need for not only lifestyle changes but also the development of therapeutics. In this thesis we discuss the potential of the variable domain of the heavy chain only antibody (VHH) as disease modifying OA drug. VHH are known for their small size, great stability and are easy to engineer. Altogether, this makes this specific type of antibody a suitable candidate for the local treatment of OA. We show the potential of a VHH that targets interleukin-1 receptor with high affinity and show it can block interleukin-1 signaling, which is an important factor that drives inflammation. In addition, we show the ability of the VHH to be encapsulated within a drug delivery system and (bio)conjugated to to dextran tyramine and dextran/hyaluronic acid tyramine polymer and hydrogels. As a proof of concept, both strategies were tested in vivo to determine their retention time. Furthermore, we show characterization of a biparatopic VHH construct targeting two epitopes of interleukin-1 receptor. To conclude, we have made some steps towards a potential new disease modifying osteoarthritic drug
Relationship Satisfaction as a Function of Event Positivity and Closeness
The catastrophe theory of attitudes (Latane & Nowak, 1994) suggests that important interpersonal relationships will elicit extreme reactions. One hundred fifty-one college students wrote about a positive, negative, or recent event with their romantic partner and an acquaintance and rated their satisfaction with the relationship during the event. Romantic relationships led to more extreme reactions, and the more important the relationship, the more extreme the satisfaction
Steering Stem Cell Fate within 3D Living Composite Tissues Using Stimuli-Responsive Cell-Adhesive Micromaterials
Engineered living microtissues such as cellular spheroids and organoids have enormous potential for the study and regeneration of tissues and organs. Microtissues are typically engineered via self-assembly of adherent cells into cellular spheroids, which are characterized by little to no cell–material interactions. Consequently, 3D microtissue models currently lack structural biomechanical and biochemical control over their internal microenvironment resulting in suboptimal functional performance such as limited stem cell differentiation potential. Here, this work report on stimuli-responsive cell-adhesive micromaterials (SCMs) that can self-assemble with cells into 3D living composite microtissues through integrin binding, even under serum-free conditions. It is demonstrated that SCMs homogeneously distribute within engineered microtissues and act as biomechanically and biochemically tunable designer materials that can alter the composite tissue microenvironment on demand. Specifically, cell behavior is controlled based on the size, stiffness, number ratio, and biofunctionalization of SCMs in a temporal manner via orthogonal secondary crosslinking strategies. Photo-based mechanical tuning of SCMs reveals early onset stiffness-controlled lineage commitment of differentiating stem cell spheroids. In contrast to conventional encapsulation of stem cell spheroids within bulk hydrogel, incorporating cell-sized SCMs within stem cell spheroids uniquely provides biomechanical cues throughout the composite microtissues’ volume, which is demonstrated to be essential for osteogenic differentiation
Spatiotemporal material functionalization via competitive supramolecular complexation of avidin and biotin analogs
Spatiotemporal control over engineered tissues is highly desirable for various biomedical applications as it emulates the dynamic behavior of natural tissues. Current spatiotemporal biomaterial functionalization approaches are based on cytotoxic, technically challenging, or non-scalable chemistries, which has hampered their widespread usage. Here we report a strategy to spatiotemporally functionalize (bio)materials based on competitive supramolecular complexation of avidin and biotin analogs. Specifically, an injectable hydrogel is orthogonally post-functionalized with desthiobiotinylated moieties using multivalent neutravidin. In situ exchange of desthiobiotin by biotin enables spatiotemporal material functionalization as demonstrated by the formation of long-range, conformal, and contra-directional biochemical gradients within complex-shaped 3D hydrogels. Temporal control over engineered tissue biochemistry is further demonstrated by timed presentation and sequestration of growth factors using desthiobiotinylated antibodies. The method’s universality is confirmed by modifying hydrogels with biotinylated fluorophores, peptides, nanoparticles, enzymes, and antibodies. Overall, this work provides a facile, cytocompatible, and universal strategy to spatiotemporally functionalize materials
Droplet microfluidics to engineer smart building blocks for modular tissue engineering
Modular tissue engineering enables the formation of larger 3D multiscale tissues by assembly of building blocks composed of cells and/or (micro)materials. However, current tissue building blocks are static, thereby limiting the functionality of modular tissues. In this study, an advanced droplet microfluidics system is used to produce microgels that are optimized to act as smart tissue building blocks. The cell-sized microgels are functionalized with reactive moieties that allow for the microgels' in situ chemical and mechanical tuning, thereby providing spatiotemporal control over living modular tissues