468 research outputs found

    The non-abelian D-brane effective action through order α′4\alpha'{}^4

    Full text link
    Requiring the existence of certain BPS solutions to the equations of motion, we determine the bosonic part of the non-abelian D-brane effective action through order α′4\alpha'{}^4. We also propose an economic organizational principle for the effective action.Comment: 12 pages, 2 figures, JHEP styl

    Surface immobilization of hexa-histidine-tagged adeno-associated viral vectors for localized gene delivery.

    Get PDF
    Adeno-associated viral (AAV) vectors, which are undergoing broad exploration in clinical trials, have significant promise for therapeutic gene delivery because of their safety and delivery efficiency. Gene delivery technologies capable of mediating localized gene expression may further enhance the potential of AAV in a variety of therapeutic applications by reducing spread outside a target region, which may thereby reduce off-target side effects. We have genetically engineered an AAV variant capable of binding to surfaces with high affinity through a hexa-histidine metal-binding interaction. This immobilized AAV vector system mediates high-efficiency delivery to cells that contact the surface and thus may have promise for localized gene delivery, which may aid numerous applications of AAV delivery to gene therapy

    Generalized geometry, calibrations and supersymmetry in diverse dimensions

    Full text link
    We consider type II backgrounds of the form R^{1,d-1} x M^{10-d} for even d, preserving 2^{d/2} real supercharges; for d = 4, 6, 8 this is minimal supersymmetry in d dimensions, while for d = 2 it is N = (2,0) supersymmetry in two dimensions. For d = 6 we prove, by explicitly solving the Killing-spinor equations, that there is a one-to-one correspondence between background supersymmetry equations in pure-spinor form and D-brane generalized calibrations; this correspondence had been known to hold in the d = 4 case. Assuming the correspondence to hold for all d, we list the calibration forms for all admissible D-branes, as well as the background supersymmetry equations in pure-spinor form. We find a number of general features, including the following: The pattern of codimensions at which each calibration form appears exhibits a (mod 4) periodicity. In all cases one of the pure-spinor equations implies that the internal manifold is generalized Calabi-Yau. Our results are manifestly invariant under generalized mirror symmetry.Comment: 28 pages, 1 tabl

    From ten to four and back again: how to generalize the geometry

    Full text link
    We discuss the four-dimensional N=1 effective approach in the study of warped type II flux compactifications with SU(3)x SU(3)-structure to AdS_4 or flat Minkowski space-time. The non-trivial warping makes it natural to use a supergravity formulation invariant under local complexified Weyl transformations. We obtain the classical superpotential from a standard argument involving domain walls and generalized calibrations and show how the resulting F-flatness and D-flatness equations exactly reproduce the full ten-dimensional supersymmetry equations. Furthermore, we consider the effect of non-perturbative corrections to this superpotential arising from gaugino condensation or Euclidean D-brane instantons. For the latter we derive the supersymmetry conditions in N=1 flux vacua in full generality. We find that the non-perturbative corrections induce a quantum deformation of the internal generalized geometry. Smeared instantons allow to understand KKLT-like AdS vacua from a ten-dimensional point of view. On the other hand, non-smeared instantons in IIB warped Calabi-Yau compactifications 'destabilize' the Calabi-Yau complex structure into a genuine generalized complex one. This deformation gives a geometrical explanation of the non-trivial superpotential for mobile D3-branes induced by the non-perturbative corrections.Comment: LaTeX, 47 pages, v2, references, hyperref added, v3, correcting small inaccuracies in eqs. (2.6a) and (5.16

    Derivative corrections to the Born-Infeld action through beta-function calculations in N=2 boundary superspace

    Full text link
    We calculate the beta-functions for an open string sigma-model in the presence of a U(1) background. Passing to N=2 boundary superspace, in which the background is fully characterized by a scalar potential, significantly facilitates the calculation. Performing the calculation through three loops yields the equations of motion up to five derivatives on the fieldstrengths, which upon integration gives the bosonic sector of the effective action for a single D-brane in trivial bulk background fields through four derivatives and to all orders in alpha'. Finally, the present calculation shows that demanding ultra-violet finiteness of the non-linear sigma-model can be reformulated as the requirement that the background is a deformed stable holomorphic U(1) bundle.Comment: 25 pages, numerous figure

    Reformulating Supersymmetry with a Generalized Dolbeault Operator

    Full text link
    The conditions for N=1 supersymmetry in type II supergravity have been previously reformulated in terms of generalized complex geometry. We improve that reformulation so as to completely eliminate the remaining explicit dependence on the metric. Doing so involves a natural generalization of the Dolbeault operator. As an application, we present some general arguments about supersymmetric moduli. In particular, a subset of them are then classified by a certain cohomology. We also argue that the Dolbeault reformulation should make it easier to find existence theorems for the N=1 equations.Comment: 30 pages, no figures. v2: minor correction

    D-branes on AdS flux compactifications

    Full text link
    We study D-branes in N=1 flux compactifications to AdS_4. We derive their supersymmetry conditions and express them in terms of background generalized calibrations. Basically because AdS has a boundary, the analysis of stability is more subtle and qualitatively different from the usual case of Minkowski compactifications. For instance, stable D-branes filling AdS_4 may wrap trivial internal cycles. Our analysis gives a geometric realization of the four-dimensional field theory approach of Freedman and collaborators. Furthermore, the one-to-one correspondence between the supersymmetry conditions of the background and the existence of generalized calibrations for D-branes is clarified and extended to any supersymmetric flux background that admits a time-like Killing vector and for which all fields are time-independent with respect to the associated time. As explicit examples, we discuss supersymmetric D-branes on IIA nearly Kaehler AdS_4 flux compactifications.Comment: 43 pages, 2 pictures, 1 table; v2: added references, color to figure and corrected typo in (6.21b

    AdS4 flux vacua in type II superstrings and their domain-wall solutions

    Get PDF
    We investigate the emergence of supersymmetric negative-vacuum-energy ground states in four dimensions. First, we rely on the analysis of the effective superpotential, which depends on the background fluxes of the internal manifold, or equivalently has its origin in the underlying gauged supergravity. Four-dimensional, supersymmetric anti-de Sitter vacua with all moduli stabilized appear when appropriate Ramond and Neveu--Schwarz fluxes are introduced in IIA. Geometric fluxes are not necessary. Then the whole setup is analyzed from the perspective of the sources, namely D/NS-branes or Kaluza--Klein monopoles. Orientifold planes are also required for tadpole cancellation. The solutions found in four dimensions correspond to domain walls interpolating between AdS4 and flat spacetime. The various consistency conditions (equations of motion, Bianchi identities and tadpole cancellation conditions) are always satisfied, albeit with source terms. We also speculate on the possibility of assigning (formal) entropies to AdS4 flux vacua via the corresponding dual brane systems.Comment: Acknowledgment replace

    A second look at N=1 supersymmetric AdS_4 vacua of type IIA supergravity

    Full text link
    We show that a class of type IIA vacua recently found within the N=4 effective approach corresponds to compactification on Ads_4 \times S^3 \times S^3/Z_2^3. The results obtained using the effective method completely match the general ten-dimensional analysis for the existence of N=1 warped compactifications on Ads_4 \times M_6. In particular, we verify that the internal metric is nearly-Kahler and that for specific values of the parameters the Bianchi identity of the RR 2-form is fulfilled without sources. For another range of parameters, including the massless case, the Bianchi identity is satisfied when D6-branes are introduced. Solving the tadpole cancellation conditions in D=4 we are able to find examples of appropriate sets of branes. In the second part of this paper we describe how an example with internal space CP^3 but with non nearly-Kahler metric fits into the general analysis of flux vacua.Comment: Latex file, 35 pages, no figures. Reference added, minor corrections adde

    Mrgprd Enhances Excitability in Specific Populations of Cutaneous Murine Polymodal Nociceptors

    Get PDF
    The Mas-related G protein-coupled receptor D (Mrgprd) is selectively expressed in nonpeptidergic nociceptors that innervate the outer layers of mammalian skin. The function of Mrgprd in nociceptive neurons and the physiologically relevant somatosensory stimuli that activate Mrgprd^-expressing (Mrgprd^+) neurons are currently unknown. To address these issues, we studied three Mrgprd knock-in mouse lines using an ex vivo somatosensory preparation to examine the role of the Mrgprd receptor and Mrgprd+ afferents in cutaneous somatosensation. In mouse hairy skin, Mrgprd, as marked by expression of green fluorescent protein reporters, was expressed predominantly in the population of nonpeptidergic, TRPV1-negative, C-polymodal nociceptors. In mice lacking Mrgprd, this population of nociceptors exhibited decreased sensitivity to cold, heat, and mechanical stimuli. Additionally, in vitro patch-clamp studies were performed on cultured dorsal root ganglion neurons from Mrgprd^(–/–) and Mrgprd^(+/–) mice. These studies revealed a higher rheobase in neurons from Mrgprd^(–/–) mice than from Mrgprd^(+/–) mice. Furthermore, the application of the Mrgprd ligand β-alanine significantly reduced the rheobase and increased the firing rate in neurons from Mrgprd^(+/–) mice but was without effect in neurons from Mrgprd^(–/–) mice. Our results demonstrate that Mrgprd influences the excitability of polymodal nonpeptidergic nociceptors to mechanical and thermal stimuli
    • …
    corecore