13,519 research outputs found
New Results on e+e- Line Emission in U+Ta Collisions
We present new results obtained from a series of follow-up e+e- coincidence
measurements in heavy-ion collisions, utilizing an improved experimental set-up
at the double-Orange beta-spectrometer of GSI. The collision system U+Ta was
reinvestigated in three independent runs at beam energies in the range
(6.0-6.4)xA MeV and different target thicknesses, with the objective to
reproduce a narrow sum-energy e+e- line at ~635 keV observed previously in this
collision system. At improved statistical accuracy, the line could not be found
in these new data. For the ''fission'' scenario, an upper limit (1 sigma) on
its production probability per collision of 1.3x10^{-8} can be set which has to
be compared to the previously reported value of [4.9 +- 0.8 (stat.) +- 1.0
(syst)]x10^{-7}. In the light of the new results, a reanalysis of the old data
shows that the continuous part of the spectrum at the line position is
significantly higher than previously assumed, thus reducing the production
probability of the line by a factor of two and its statistical significance to
< 3.4sigma.Comment: 15 pages, standard LaTeX with 3 included PS figures; Submitted to
Physics Letters
First Energy and Angle differential Measurements of e^+e^- -pairs emitted by Internal Pair Conversion of excited Heavy Nuclei
We present the first energy and angle resolved measurements of e+e- pairs
emitted from heavy nuclei (Z>=40) at rest by internal pair conversion (IPC) of
transitions with energies of less than 2MeV as well as recent theoretical
results using the DWBA method, which takes full account of relativistic
effects, magnetic substates and finite size of the nucleus. The 1.76MeV E0
transition in Zr90 (Sr source) and the 1.77MeV M1 transition in Pb207 (Bi
source) have been investigated experimentally using the essentially improved
set-up at the double-ORANGE beta-spectrometer of GSI. The measurements prove
the capability of the setup to cleanly identify the IPC pairs in the presence
of five orders of magnitude higher beta- and gamma background from the same
source and to yield essentially background-free sum spectra despite the large
background. Using the ability of the ORANGE setup to directly determine the
opening angle of the e+e- pairs, the angular correlation of the emitted pairs
was measured. In the Zr90 case the correlation could be deduced for a wide
range of energy differences of the pairs. The Zr90 results are in good
agreement with recent theory. The angular correlation deduced for the M1
transition in Pb207 is in strong disagreement with theoretical predictions
derived within the Born approximation and shows almost isotropic character.
This is again in agreement with the new theoretical results.Comment: LaTeX, 28 pages incl. 10 PS figures; Accepted by Z.Phys.
Identification of Wax Esters in Latent Print Residues by Gas Chromatography-Mass Spectromertry and Their Potential Use as Aging Parameters
Recent studies show that the composition of fingerprint residue varies significantly from the same donor as well as between donors. This variability is a major drawback in latent print dating issues. This study aimed, therefore, at the definition of a parameter that is less variable from print to print, using a ratio of peak area of a target compound degrading over time divided by the summed area of peaks of more stable compounds also found in latent print residues.Gas chromatography-mass spectrometry (GC/MS) analysis of the initial lipid composition of latent prints identifies four main classes of compounds that can be used in the definition of an aging parameter: fatty acids, sterols, sterol precursors, and wax esters (WEs). Although the entities composing the first three groups are quite well known, those composing WEs are poorly reported. Therefore, the first step of the present work was to identify WE compounds present in latent print residues deposited by different donors. Of 29 WEs recorded in the chromatograms, seven were observed in the majority of samples.The identified WE compounds were subsequently used in the definition of ratios in combination with squalene and cholesterol to reduce the variability of the initial composition between latent print residues from different persons and more particularly from the same person. Finally, the influence of a latent print enhancement process on the initial composition was studied by analyzing traces after treatment with magnetic powder, 1,2-indanedione, and cyanoacrylate
Femtosecond pulses and dynamics of molecular photoexcitation: RbCs example
We investigate the dynamics of molecular photoexcitation by unchirped
femtosecond laser pulses using RbCs as a model system. This study is motivated
by a goal of optimizing a two-color scheme of transferring
vibrationally-excited ultracold molecules to their absolute ground state. In
this scheme the molecules are initially produced by photoassociation or
magnetoassociation in bound vibrational levels close to the first dissociation
threshold. We analyze here the first step of the two-color path as a function
of pulse intensity from the low-field to the high-field regime. We use two
different approaches, a global one, the 'Wavepacket' method, and a restricted
one, the 'Level by Level' method where the number of vibrational levels is
limited to a small subset. The comparison between the results of the two
approaches allows one to gain qualitative insights into the complex dynamics of
the high-field regime. In particular, we emphasize the non-trivial and
important role of far-from-resonance levels which are adiabatically excited
through 'vertical' transitions with a large Franck-Condon factor. We also point
out spectacular excitation blockade due to the presence of a quasi-degenerate
level in the lower electronic state. We conclude that selective transfer with
femtosecond pulses is possible in the low-field regime only. Finally, we extend
our single-pulse analysis and examine population transfer induced by coherent
trains of low-intensity femtosecond pulses.Comment: 25 pages, 12 figure
A comparative study of ballpoint ink ageing parameters using GC/MS.
For more than a decade scientists tried to develop methods capable of dating ink by monitoring the loss of phenoxyethanol (PE) over time. While many methods were proposed in the literature, few were really used to solve practical cases and they still raise much concern within the scientific community. In fact, due to the complexity of ink drying processes it is particularly difficult to find a reliable ageing parameter to reproducibly follow ink ageing. Moreover, systematic experiments are required in order to evaluate how different factors actually influence the results over time. Therefore, this work aimed at evaluating the capacity of four different ageing parameters to reliably follow ink ageing over time: (1) the quantity of solvent PE in an ink line, (2) the relative peak area (RPA) normalising the PE results using stable volatile compounds present in the ink formulation, (3) the solvent loss ratio (R%) calculated from PE results obtained by the analyses of naturally and artificially aged samples, (4) a modified solvent loss ratio version (R%*) calculated from RPA results. After the determination of the limits of reliable measurements of the analytical method, the repeatability of the different ageing parameters was evaluated over time, as well as the influence of ink composition, writing pressure and storage conditions on the results. Surprisingly, our results showed that R% was not the most reliable parameter, as it showed the highest standard deviation. Discussion of the results in an ink dating perspective suggests that other proposed parameters, such as RPA values, may be more adequate to follow ink ageing over time
Positron spectra from internal pair conversion observed in {238}U + {181}Ta collisions
We present new results from measurements and simulations of positron spectra,
originating from 238U + 181Ta collisions at beam energies close to the Coulomb
barrier. The measurements were performed using an improved experimental setup
at the double-Orange spectrometer of GSI. Particular emphasis is put on the
signature of positrons from Internal-Pair-Conversion (IPC) processes in the
measured e+ energy spectra, following the de-excitation of electromagnetic
transitions in the moving Ta-like nucleus. It is shown by Monte Carlo
simulations that, for the chosen current sweeping procedure used in the present
experiments, positron emission from discrete IPC transitions can lead to rather
narrow line structures in the measured energy spectra. The measured positron
spectra do not show evidence for line structures within the statistical
accuracy achieved, although expected from the intensities of the observed
transitions (E keV) and theoretical conversion
coefficients. This is due to the reduced detection efficiency for IPC
positrons, caused by the limited spatial and momentum acceptance of the
spectrometer. A comparison with previous results, in which lines have been
observed, is presented and the implications are discussed.Comment: LaTeX, 20 pages including 5 EPS figures; Accepted by Eur. Phys.Jour.
Reactive oxygen species induce virus-independent MAVS-oligomerization in systemic lupus erythematosus
The increased expression of genes induced by type I interferon (IFN) is characteristic of viral infections and systemic lupus erythematosus (SLE). We showed that mitochondrial antiviral signaling (MAVS) protein, which normally forms a complex with retinoic acid gene I (RIG-I)–like helicases during viral infection, was activated by oxidative stress independently of RIG-I helicases. We found that chemically generated oxidative stress stimulated the formation of MAVS oligomers, which led to mitochondrial hyperpolarization and decreased adenosine triphosphate production and spare respiratory capacity, responses that were not observed in similarly treated cells lacking MAVS. Peripheral blood lymphocytes of SLE patients also showed spontaneous MAVS oligomerization that correlated with the increased secretion of type I IFN and mitochondrial oxidative stress. Furthermore, inhibition of mitochondrial reactive oxygen species (ROS) by the mitochondria-targeted antioxidant MitoQ prevented MAVS oligomerization and type I IFN production. ROS-dependent MAVS oligomerization and type I IFN production were reduced in cells expressing the MAVS-C79F variant, which occurs in 30% of sub-Saharan Africans and is linked with reduced type I IFN secretion and milder disease in SLE patients. Patients expressing the MAVS-C79F variant also had reduced amounts of oligomerized MAVS in their plasma compared to healthy controls. Together, our findings suggest that oxidative stress–induced MAVS oligomerization in SLE patients may contribute to the type I IFN signature that is characteristic of this syndrome
Cotunneling thermopower of single electron transistors
We study the thermopower of a quantum dot weakly coupled to two reservoirs by
tunnel junctions. At low temperatures the transport through the dot is
suppressed by charging effects (Coulomb blockade). As a result the thermopower
shows an oscillatory dependence on the gate voltage. We study this dependence
in the limit of low temperatures where the transport through the dot is
dominated by the processes of inelastic cotunneling. We also obtain a crossover
formula for intermediate temperatures which connects our cotunneling results to
the known sawtooth behavior in the sequential tunneling regime. As the
temperature is lowered, the amplitude of thermopower oscillations increases,
and their shape changes qualitatively.Comment: 9 pages, including 4 figure
- …