44 research outputs found

    Intermediary metabolism

    Get PDF
    Caenorhabditis elegans has orthologs for most of the key enzymes involved in eukaryotic intermediary metabolism, suggesting that the major metabolic pathways are probably present in this species. We discuss how metabolic patterns and activity change as the worm traverses development and ages, or responds to unfavorable external factors, such as temperature extremes or shortages in food or oxygen. Dauer diapause is marked by an enhanced resistance to oxidative stress and a shift toward microaerobic and anaplerotic metabolic pathways and hypometabolism, as indicated by the increased importance of the malate dismutation and glyoxylate pathways and the repression of citric acid cycle activity. These alterations promote prolonged survival of the dauer larva; some of these changes also accompany the extended lifespan of insulin/IGF-1 and several mitochondrial mutants. We also present a brief overview of the nutritional requirements, energy storage and waste products generated by C. elegans

    Extending life-span in C-elegans

    Get PDF

    Alternate metabolism during the dauer stage of the nematode Caenorhabditis elegans

    Get PDF
    When environmental conditions are unsuitable to support nematode reproduction, Caenorhabditis elegans arrests development before the onset of sexual maturity and specialised âdauerâ larvae, adapted for dispersal, and extended diapause are formed. Dauer larvae do not feed and their metabolism is dependent on internal food reserves. Adult worms which express defects in the insulin/insulin-like growth factor receptor DAF-2 also display enhanced longevity. Whole genome mRNA expression profiling has demonstrated that C. elegans dauer larvae and daf-2 adults have similar transcription profiles for a cohort of longevity genes. Important components of this enhanced longevity system are the a-crystallin family of small heat shock proteins, anti-ROS defence systems, increased activity of cellular detoxification processes and possibly also increased chromatin stability and decreased protein turnover. Anaerobic fermentation pathways are upregulated in dauer larvae, while long-lived daf-2 adults appear to have normal oxidative metabolism. Anabolic pathways are down regulated in dauer larvae (and possibly in daf-2 adults as well), and energy consumption appears to be diverted to enhanced cellular maintenance and detoxification processes in both systems

    Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans

    Get PDF
    The superoxide radical (O-2(-)) has long been considered a major cause of aging. O-2(-) in cytosolic, extracellular, and mitochondrial pools is detoxified by dedicated superoxide dismutase (SOD) isoforms. We tested the impact of each SOD isoform in Caenorhabditis elegans by manipulating its five sod genes and saw no major effects on life span. sod genes are not required for daf-2 insulin/IGF-1 receptor mutant longevity. However, loss of the extracellular Cu/ZnSOD sod-4 enhances daf-2 longevity and constitutive diapause, suggesting a signaling role for sod-4. Overall, these findings imply that O-2(-) is not a major determinant of aging in C. elegans

    Alternative Oxidase Dependent Respiration Leads to an Increased Mitochondrial Content in Two Long-Lived Mutants of the Ageing Model Podospora anserina

    Get PDF
    The retrograde response constitutes an important signalling pathway from mitochondria to the nucleus which induces several genes to allow compensation of mitochondrial impairments. In the filamentous ascomycete Podospora anserina, an example for such a response is the induction of a nuclear-encoded and iron-dependent alternative oxidase (AOX) occurring when cytochrome-c oxidase (COX) dependent respiration is affected. Several long-lived mutants are known which predominantly or exclusively respire via AOX. Here we show that two AOX-utilising mutants, grisea and PaCox17::ble, are able to compensate partially for lowered OXPHOS efficiency resulting from AOX-dependent respiration by increasing mitochondrial content. At the physiological level this is demonstrated by an elevated oxygen consumption and increased heat production. However, in the two mutants, ATP levels do not reach WT levels. Interestingly, mutant PaCox17::ble is characterized by a highly increased release of the reactive oxygen species (ROS) hydrogen peroxide. Both grisea and PaCox17::ble contain elevated levels of mitochondrial proteins involved in quality control, i. e. LON protease and the molecular chaperone HSP60. Taken together, our work demonstrates that AOX-dependent respiration in two mutants of the ageing model P. anserina is linked to a novel mechanism involved in the retrograde response pathway, mitochondrial biogenesis, which might also play an important role for cellular maintenance in other organisms

    Public and private mechanisms of life extension in Caenorhabditis elegans

    No full text
    Model organisms have been widely used to study the ageing phenomenon in order to learn about human ageing. Although the phylogenetic diversity between vertebrates and some of the most commonly used model systems could hardly be greater, several mechanisms of life extension are public (common characteristic in divergent species) and likely share a common ancestry. Dietary restriction, reduced IGF-signaling and, seemingly, reduced ROS-induced damage are the best known mechanisms for extending longevity in a variety of organisms. In this review, we summarize the knowledge of ageing in the nematode Caenorhabditis elegans and compare the mechanisms of life extension with knowledge from other model organisms
    corecore