8 research outputs found

    Modeling the recrystallization textures in particle containing al alloys after various rolling reductions

    No full text
    Various degrees of rolling reductions account for diverse recrystallization mechanisms and thus different microstructural and texture features. The development of deformation and recrystallization textures is discussed based on experimental data and results of finite element and crystal plasticity simulations. A recrystallization model is presented that incorporates the microstructural heterogeneities and changes in local stored energy. The experimental observations and results of crystal plasticity calculations testify that orientation selection during recrystallization is controlled by low stored energy nucleation which is incorporated in the recrystallization model. Results of texture simulations show that the evolution of {100} and {011} components is related to a particle stimulated nucleation mechanism

    Analytic model for multi-point large-radius bending of steel sheets

    Get PDF
    While the majority of industrial sheet bending processes consist of conventional air bending, more complex bending processes such as multi-point bending are also utilized. Multi-point bending involves forming several bends simultaneously with changing contact conditions. Of the various models that may be employed to simulate such processes, analytic models are most attractive for industrial applications as they are time-efficient, strongly theoretically supported and easily extended to a wide range of dies layouts without the need of additional experimental data. In this paper a new analytic model is presented to predict the forming forces, the deformation of the sheet and the springback. The model is based on the literature around large-radius air bending. The geometry of the sheet is determined at each moment as a function of the tool’s positions. The reaction forces are calculated based on the equilibrium of forces and moments and the springback is calculated based on the elastic unloading of the internal bending forces. The model has been compared with a more time consuming finite element (FE) model and the geometry of the sheet has been experimentally verified by means of digital processing of video images. The proposed analytic model shows good agreement with the computational FE model and it is demonstrated to be a robust tool for calculation of the bending characteristics
    corecore