34 research outputs found

    Low circulating concentrations of citrulline and FGF19 predict chronic cholestasis and poor survival in adult patients with chronic intestinal failure: development of a Model for End-Stage Intestinal Failure (MESIF risk score)

    Get PDF
    Contains fulltext : 205171.pdf (publisher's version ) (Open Access)BACKGROUND: Patients with chronic intestinal failure (CIF) often develop cholestatic liver injury, which may lead to liver failure and need for organ transplantation. OBJECTIVES: The aim of this study was to investigate whether citrulline (CIT) and the enterokine fibroblast growth factor 19 (FGF19) are associated with chronic cholestasis and survival in adult CIF patients, and to develop a risk score to predict their survival. METHODS: We studied 135 adult CIF patients on intravenous supplementation (>3 mo). Associations of plasma CIT and FGF19 with chronic cholestasis and survival were estimated by logistic and Cox regression models. A predictive risk score was developed and validated internally. RESULTS: Patients with chronic cholestasis (17%) had a reduced 5-y survival rate compared with patients without chronic cholestasis (38% and 62%, respectively). In multivariable analysis, low FGF19, low CIT, and female sex were associated with chronic cholestasis. Patients with low rather than high CIT or FGF19 also had reduced 5-y survival rates (29% compared with 69%; 54% compared with 66%, respectively). Risk factors identified in multivariable analysis of survival were low FGF19 (HR: 3.4), low CIT (HR: 3.3), and number of intravenous infusions per week (HR: 1.4). These 3 predictors were incorporated in a risk model of survival termed Model for End-Stage Intestinal Failure (MESIF) (C-statistic 0.78). The 5-y survival rates for patients with MESIF scores of 0 to 40 (n = 13) were 80%, 58%, and 14%, respectively. CONCLUSIONS: CIT and FGF19 predict chronic cholestasis and survival in this cohort of adult CIF patients, and the derived MESIF score is associated with their survival. Pending external validation, the MESIF score may help to identify patients for closer clinical monitoring or earlier referral to intestinal transplantation centers

    Prolonged fibroblast growth factor 19 response in patients with primary sclerosing cholangitis after an oral chenodeoxycholic acid challenge

    Get PDF
    Bile salts likely contribute to liver injury in patients with primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC). Fibroblast growth factor 19 (FGF19) is a bile salt-induced enterokine with hepatoprotective potential as it suppresses de novo bile salt synthesis. Here, we evaluated the bile salt receptor FXR/FGF19 gut-liver axis in PSC and PBC patients. Fasted patients with PSC (n = 12) and PBC (n = 10), and healthy controls (HC; n = 10) were orally challenged with the natural FXR agonist chenodeoxycholic acid (CDCA 15 mg/kg). Blood was sampled hourly until 8 h afterwards. Serum FGF19 and bile salt excursions were determined. Serum levels of 7 alpha-hydroxy-4-cholesten-3-one (C4), reflecting bile salt synthesis, were measured as a biomarker of FGF19 response. Baseline serum FGF19 levels were comparable between groups, while fasted bile salt levels in PSC patients were elevated. Upon CDCA challenge, HC and PBC patients showed a serum FGF19 peak after 4 h followed by a decline. PSC patients showed a prolonged and elevated serum FGF19 response up to 8 h, combined with a sustained serum elevation of CDCA and other bile salts. In general, C4 levels declined following FGF19 elevation. In PSC patients with less favorable prognosis, baseline C4 levels were drastically suppressed and did not further decline. Following an oral CDCA challenge, PSC patients showed an impaired clearance of CDCA and a prolonged serum FGF19 response. FXR agonist therapy in PSC could cause prolonged exposure to elevated levels of FGF19, and we propose careful monitoring for detrimental side effects in patient studies

    FXR agonism protects against liver injury in a rat model of intestinal failure-associated liver disease

    Get PDF
    Background: Intestinal failure-associated liver disease (IFALD) is a clinical challenge. The pathophysiology is multifactorial and remains poorly understood. Disturbed recirculation of bile salts, e.g. due to loss of bile via an enterocutaneous fistula, is considered a major contributing factor. We hypothesize that impaired signaling via the bile salt receptor FXR underlies the development of IFALD. The aim of this study was to investigate whether activation of FXR improves liver homeostasis during chronic loss of bile in rats. Methods: To study consequences of chronic loss of bile, rats underwent external biliary drainage (EBD) or sham surgery for seven days, and the prophylactic potential of the FXR agonist INT-747 was assessed. Results: EBD for 7 days resulted in liver test abnormalities and histological liver damage. Expression of the intestinal FXR target gene Fgf15 was undetectable after EBD, and this was accompanied by an anticipated increase in hepatic Cyp7a1 expression, indicating increased bile salt synthesis. Treatment with INT-747 improved serum biochemistry, reduced loss of bile fluid in drained rats and prevented development of drainage-associated histological liver injury. Conclusions: EBD results in extensive hepatobiliary injury and cholestasis. These data suggest that FXR activation might be a novel therapy in preventing liver dysfunction in patients with intestinal failure. Relevance for patients: This study demonstrates that chronic loss of bile causes liver injury in rats. Abrogated recycling of bile salts impairing of enterohepatic bile salt/FXR signaling underlies these pathological changes, as administration of FXR agonist INT747 prevents biliary drainage-induced liver damage. Pharmacological activation of FXR might be a therapeutic strategy to treat disorders accompanied by a perturbed enterohepatic circulation such as intestinal failure-associated liver diseas

    The portal-drained viscera release fibroblast growth factor 19 in humans

    No full text
    Fibroblast growth factor 19 (FGF19) is an ileum‐derived endrocrine factor that is produced in response to transepithelial bile salt flux. FGF19 represses bile salt synthesis in the liver. Despite the general assumption that FGF19 signals to the liver via portal blood, no human data are available to support this notion. The aim was to study portal FGF19 levels, and determined bile salt and FGF19 fluxes across visceral organs in humans. Bile salt and FGF19 levels were assessed in arterial, portal, and hepatic venous blood collected from fasted patients who underwent partial liver resection for colorectal liver metastases (n = 30). Fluxes across the portal‐drained viscera (PDV), liver, and splanchnic area were calculated. Portal bile salt levels (7.8 [5.0–12.4] ÎŒmol/L) were higher than levels in arterial (2.7 [1.7–5.5] ÎŒmol/L, P < 0.0001) and hepatic venous blood (3.4 [2.5–6.5] ÎŒmol/L, P < 0.0001). Bile salts released by the PDV (+1.2 [+0.7–+2.0] mmol kg(−1) h(−1), P < 0.0001) were largely taken up by the liver (−1.0 [−1.8 to −0.4] mmol kg(−1) h(−1), P < 0.0001). Portal levels of FGF19 (161 ± 78 pg/mL) were higher than arterial levels (135 ± 65 pg/mL, P = 0.046). A net release of FGF19 by the PDV (+4.0 [+2.1 to +9.9] ng kg(−1) h(−1), P < 0.0001) was calculated. There was no significant flux of FGF19 across the liver (−0.2 [−3.7 to +7.4] ng kg(−1) h(−1), P = 0.93). In conclusion, FGF19 levels in human portal blood are higher than in arterial blood. FGF19 is released by the portal‐drained viscera under fasted steady state conditions

    The effect of intermittent or continuous feeding and amino acid concentration on urea-to-creatinine ratio in critical illness.

    Get PDF
    BACKGROUND: We sought to determine whether peaks in essential amino acid concentration associated with intermittent feeding may provide anabolic advantages when compared to continuous feeding regimens in critical care. MATERIALS AND METHODS: We performed a secondary analysis of data from a multicentre trial of UK intensive care patients randomised to intermittent or continuous feeding. A linear-mixed-effects model was developed to assess differences in urea-creatinine-ratio (raised values of which can be a marker of muscle wasting) between arms. To investigate metabolic phenotypes, we performed k-means urea-to-creatinine ratio trajectory-clustering. Amino acid concentrations were also modelled against urea-to-creatinine ratio from day 1 to day 7. The main outcome measure was serum urea-to-creatinine ratio (mmol/mmol) from day 0 to the end of the 10-day study period. RESULTS: Urea-to-creatinine ratio trajectory differed between feeding regimens (coefficient -0.245, p = 0.002). Patients receiving intermittent feeding demonstrated a flatter urea-to-creatinine ratio trajectory. With K-means analysis, the cluster with the largest proportion of continuously fed patients demonstrated the steepest rise in urea-to-creatinine ratio. Neither protein intake per se nor serum concentrations of essential amino acid concentrations were correlated with urea-to-creatinine ratio (coefficient = 0.088, p = 0.506; and coefficient <0.001, p = 0.122, respectively). CONCLUSION: Intermittent feeding can mitigate the rise in urea-to-creatinine ratio otherwise seen in those continuously fed, suggesting that catabolism may have been to some degree prevented. This article is protected by copyright. All rights reserved

    Bile Salt and FGF19 Signaling in the Early Phase of Human Liver Regeneration

    No full text
    The involvement of bile salt–fibroblast growth factor 19 (FGF19) signaling in human liver regeneration (LR) is not well studied. Therefore, we studied aspects of bile salt–FGF19 signaling shortly after liver resection in patients. We compared plasma bile salt and FGF19 levels in arterial, portal and hepatic venous blood, calculated venous‐arterial differences (ΔVA), and determined hepatic transcript levels on two intra‐operative time points: before ( 2‐3 hours) liver resection (i.e., following surgery). Postoperative bile salt and FGF19 levels were assessed on days 1, 2, and 3. LR was studied by computed tomography (CT)–liver volumetry. Following surgery, the liver, arterial, and portal bile salt levels were elevated (P < 0.05). Furthermore, an increased amount of bile salts was released in portal blood and extracted by the remnant liver (P < 0.05). Postoperatively, bile salt levels were elevated from day 1 onward (P < 0.001). For FGF19, intra‐operative or postoperative changes of ΔVA or plasma levels were not observed. The bile salt–homeostatic regulator farnesoid X receptor (FXR) was markedly up‐regulated following surgery (P < 0.001). Cell‐cycle re‐entry priming factors (interleukin 6 [IL‐6], signal transducer and activator of transcription 3 [STAT3], and cJUN) were up‐regulated following surgery and were positively correlated with FXR expression (P < 0.05). Postoperative hyperbilirubinemia was preceded by postsurgery low FXR and high Na+/Taurocholate cotransporting polypeptide (NTCP) expression in the remnant liver coupled with higher liver bile salt content (P < 0.05). Finally, bile salt levels on postoperative day 1 were an independent predictor of LR (P < 0.05). Conclusion: Systemic, portal, and liver bile salt levels are rapidly elevated after liver resection. Postoperative bile salts were positively associated with liver volume gain. In the studied time frame, FGF19 levels remained unaltered, suggesting that FGF19 plays a minor role in human LR. These findings indicate a more relevant role of bile salts in human LR
    corecore