4 research outputs found

    Медико-психологическая характеристика и дифференциальная диагностика дезадаптивных состояний у военнослужащих

    Get PDF
    Діагностична і експертна оцінка дезадаптивних станів є актуальною проблемою сучасної психіатрії. У цієї роботі розглядаються дезадаптивні стани з погляду девіантної поведінки у акцентуйованих осіб. Результати дослідження підтверджувалися психологічними, нейрофізіологічними методами.Diagnostics and expert estimation of deadaptation states is a topical problem of modern psychiatry. This article represents an examination of deadaptation states from the point of view of deviant behavior of accentuated personalities. The research results were confirmed by psychological and neurophysiological methods

    Improved platelet survival after cold storage by prevention of glycoprotein Ibα clustering in lipid rafts

    No full text
    ABSTRACT Background Room temperature storage of platelets for transfusion increases the risk of microbial infection and decreases platelet functionality, leading to out-date discard rates of up to 20%. Cold storage may be a better alternative, but this treatment leads to rapid platelet clearance after transfusion, initiated by changes in glycoprotein Ibα, the receptor for von Willebrand factor. Design and Methods We examined the change in glycoprotein Ibα distribution using Förster Resonance Energy Transfer by time-gated Fluorescence Lifetime Imaging Microscopy. Results Cold storage induced deglycosylation of glycoprotein Ibα ectodomain, exposing N-acetyl-Dglucosamine residues, which sequestered with GM1 gangliosides in lipid rafts. Raft-associated glycoprotein Ibα formed clusters upon binding of 14-3-3ζ adaptor proteins to its cytoplasmic tail, a process accompanied by mitochondrial injury and phosphatidyl serine exposure. Cold storage left glycoprotein Ibα surface expression unchanged and although glycoprotein V decreased, the fall did not affect glycoprotein Ibα clustering. Prevention of glycoprotein Ibα clustering by blockade of deglycosylation and 14-3-3ζ translocation raised the survival of cold-stored platelets above levels of room temperature platelets without compromising hemostatic functions. Conclusions We conclude that glycoprotein Ibα translocates to lipid rafts upon cold-induced deglycosylation and forms clusters by associating with 14-3-3ζ. Interference with these steps provides a means to enable cold storage of platelet concentrates in the near future

    Improved platelet survival after cold storage by prevention of glycoprotein Ibα clustering in lipid rafts

    No full text
    ABSTRACT Background Room temperature storage of platelets for transfusion increases the risk of microbial infection and decreases platelet functionality, leading to out-date discard rates of up to 20%. Cold storage may be a better alternative, but this treatment leads to rapid platelet clearance after transfusion, initiated by changes in glycoprotein Ibα, the receptor for von Willebrand factor. Design and Methods We examined the change in glycoprotein Ibα distribution using Förster Resonance Energy Transfer by time-gated Fluorescence Lifetime Imaging Microscopy. Results Cold storage induced deglycosylation of glycoprotein Ibα ectodomain, exposing N-acetyl-Dglucosamine residues, which sequestered with GM1 gangliosides in lipid rafts. Raft-associated glycoprotein Ibα formed clusters upon binding of 14-3-3ζ adaptor proteins to its cytoplasmic tail, a process accompanied by mitochondrial injury and phosphatidyl serine exposure. Cold storage left glycoprotein Ibα surface expression unchanged and although glycoprotein V decreased, the fall did not affect glycoprotein Ibα clustering. Prevention of glycoprotein Ibα clustering by blockade of deglycosylation and 14-3-3ζ translocation raised the survival of cold-stored platelets above levels of room temperature platelets without compromising hemostatic functions. Conclusions We conclude that glycoprotein Ibα translocates to lipid rafts upon cold-induced deglycosylation and forms clusters by associating with 14-3-3ζ. Interference with these steps provides a means to enable cold storage of platelet concentrates in the near future

    Platelet interaction with von Willebrand factor is enhanced by shear-induced clustering of glycoprotein Ibα

    No full text
    Initial platelet arrest at the exposed arterial vessel wall is mediated through glycoprotein Ibα binding to the A1 domain of von Willebrand factor. This interaction occurs at sites of elevated shear force, and strengthens upon increasing hydrodynamic drag. The increased interaction requires shear-dependent exposure of the von Willebrand factor A1 domain, but the contribution of glycoprotein Ibα remains ill defined. We have previously found that glycoprotein Ibα forms clusters upon platelet cooling and hypothesized that such a property enhances the interaction with von Willebrand factor under physiological conditions. We analyzed the distribution of glycoprotein Ibα with Förster resonance energy transfer using time-gated fluorescence lifetime imaging microscopy. Perfusion at a shear rate of 1,600 s(-1) induced glycoprotein Ibα clusters on platelets adhered to von Willebrand factor, while clustering did not require von Willebrand factor contact at 10,000 s(-1). Shear-induced clustering was reversible, not accompanied by granule release or αIIbβ3 activation and improved glycoprotein Ibα-dependent platelet interaction with von Willebrand factor. Clustering required glycoprotein Ibα translocation to lipid rafts and critically depended on arachidonic acid-mediated binding of 14-3-3ζ to its cytoplasmic tail. This newly identified mechanism emphasizes the ability of platelets to respond to mechanical force and provides new insights into how changes in hemodynamics influence arterial thrombus formation
    corecore