18 research outputs found
A new layout optimization technique for interferometric arrays, applied to the MWA
Antenna layout is an important design consideration for radio interferometers
because it determines the quality of the snapshot point spread function (PSF,
or array beam). This is particularly true for experiments targeting the 21 cm
Epoch of Reionization signal as the quality of the foreground subtraction
depends directly on the spatial dynamic range and thus the smoothness of the
baseline distribution. Nearly all sites have constraints on where antennas can
be placed---even at the remote Australian location of the MWA (Murchison
Widefield Array) there are rock outcrops, flood zones, heritages areas,
emergency runways and trees. These exclusion areas can introduce spatial
structure into the baseline distribution that enhance the PSF sidelobes and
reduce the angular dynamic range. In this paper we present a new method of
constrained antenna placement that reduces the spatial structure in the
baseline distribution. This method not only outperforms random placement
algorithms that avoid exclusion zones, but surprisingly outperforms random
placement algorithms without constraints to provide what we believe are the
smoothest constrained baseline distributions developed to date. We use our new
algorithm to determine antenna placements for the originally planned MWA, and
present the antenna locations, baseline distribution, and snapshot PSF for this
array choice.Comment: 12 pages, 6 figures, 1 table. Accepted for publication in MNRA
First Spectroscopic Imaging Observations of the Sun at Low Radio Frequencies with the Murchison Widefield Array Prototype
We present the first spectroscopic images of solar radio transients from the prototype for the Murchison Widefield Array, observed on 2010 March 27. Our observations span the instantaneous frequency band 170.9– 201.6 MHz. Though our observing period is characterized as a period of “low” to “medium” activity, one broadband emission feature and numerous short-lived, narrowband, non-thermal emission features are evident. Our data represent a significant advance in low radio frequency solar imaging, enabling us to follow the spatial, spectral, and temporal evolution of events simultaneously and in unprecedented detail. The rich variety of features seen here reaffirms the coronal diagnostic capability of low radio frequency emission and provides an early glimpse of the nature of radio observations that will become available as the next generation of low-frequency radio interferometers come online over the next few years
First spectroscopic imaging observations of the sun at low radio frequencies with the Murchison Widefield Array Prototype
We present the first spectroscopic images of solar radio transients from the prototype for the Murchison Widefield Array, observed on 2010 March 27. Our observations span the instantaneous frequency band 170.9- 201.6 MHz. Though our observing period is characterized as a period of "low" to "medium" activity, one broadband emission feature and numerous short-lived, narrowband, non-thermal emission features are evident. Our data represent a significant advance in low radio frequency solar imaging, enabling us to follow the spatial, spectral, and temporal evolution of events simultaneously and in unprecedented detail. The rich variety of features seen here reaffirms the coronal diagnostic capability of low radio frequency emission and provides an early glimpse of the nature of radio observations that will become available as the next generation of low-frequency radio interferometers come online over the next few years
Genome-Wide Association Study of Circulating Interleukin 6 Levels Identifies Novel Loci
Interleukin-6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery, and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67 428 (n{discovery} = 52 654 and n_{replication} = 14 774) individuals of European ancestry. The inverse variance fixed-effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on Chromosome (Chr) 2q14, (pcombined = 1.8 × 10^{−11}), HLA-DRB1/DRB5 rs660895 on Chr6p21 (p_{combined} = 1.5 × 10^{−10}) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (p_{combined} = 1.2 × 10^{−122}). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology
The PETAL+ project: X-ray and charged particle diagnostics for plasma experiments at LMJ-PETAL.
The first experiments on the National Ignition Facility (NIF) in the US started and will be followed by the Laser MegaJoule (LMJ) in France. Such facilities will provide unique tools for inertial confinement fusion (ICF) physics & for basic science. A petawatt short pulse laser (ps) is being added to the ns pulse beams of the LMJ. This is PETAL (PETawatt Aquitaine Laser), under construction on the LMJ site near Bordeaux (France). The Petal+ project is aiming at the design and construction of diagnostics dedicated to experiments with PETAL and LMJ laser beams. Within Petal+, three types of diagnostics are under study: a proton spectrometer, an electron spectrometer and a large-band X-ray spectrometer. The first goal of these diagnostics will be to characterize the secondary radiation and particle sources produced with PETAL. They will also be used for experiments using both ns and ps beams. In the present paper emphasis is put on the charged-particle diagnostics