9 research outputs found

    Communications Biophysics

    Get PDF
    Contains reports on seven research projects split into three sections, with research objective for the final section.National Institutes of Health (Grant 2 PO1 NS 13126)National Institutes of Health (Grant 5 RO1 NS 18682)National Institutes of Health (Grant 1 RO1 NS 20322)National Institutes of Health (Grant 1 RO1 NS 20269)National Institutes of Health (Grant 5 T32 NS 07047)Symbion, Inc.National Institutes of Health (Grant 5 RO1 NS10916)National Institutes of Health (Grant 1 RO1 NS16917)National Science Foundation (Grant BNS83-19874)National Science Foundation (Grant BNS83-19887)National Institutes of Health (Grant 5 RO1 NS12846)National Institutes of Health (Grant 5 RO1 NS21322)National Institutes of Health (Grant 5 RO1 NS 11080

    Communication Biophysics

    Get PDF
    Contains reports on six research projects.National Institutes of Health (Grant 5 PO1 NS13126)National Institutes of Health (Grant 5 RO1 NS18682)National Institutes of Health (Grant 5 RO1 NS20322)National Institutes of Health (Grant 5 R01 NS20269)National Institutes of Health (Grant 5 T32NS 07047)Symbion, Inc.National Science Foundation (Grant BNS 83-19874)National Science Foundation (Grant BNS 83-19887)National Institutes of Health (Grant 6 RO1 NS 12846)National Institutes of Health (Grant 1 RO1 NS 21322

    Communications Biophysics

    Get PDF
    Contains research objectives and reports on eight research projects split into three sections.National Institutes of Health (Grant 2 PO1 NS13126)National Institutes of Health (Grant 5 RO1 NS18682)National Institutes of Health (Grant 5 RO1 NS20322)National Institutes of Health (Grant 1 RO1 NS 20269)National Institutes of Health (Grant 5 T32 NS 07047)Symbion, Inc.National Institutes of Health (Grant 5 R01 NS10916)National Institutes of Health (Grant 1 RO NS 16917)National Science Foundation (Grant BNS83-19874)National Science Foundation (Grant BNS83-19887)National Institutes of Health (Grant 5 RO1 NS12846)National Institutes of Health (Grant 1 RO1 NS21322-01)National Institutes of Health (Grant 5 T32-NS07099-07)National Institutes of Health (Grant 1 RO1 NS14092-06)National Science Foundation (Grant BNS77-21751)National Institutes of Health (Grant 5 RO1 NS11080

    Communications Biophysics

    Get PDF
    Contains reports on seven research projects split into three sections.National Institutes of Health (Grant 5 PO1 NS13126)National Institutes of Health (Grant 1 RO1 NS18682)National Institutes of Health (Training Grant 5 T32 NS07047)National Science Foundation (Grant BNS77-16861)National Institutes of Health (Grant 1 F33 NS07202-01)National Institutes of Health (Grant 5 RO1 NS10916)National Institutes of Health (Grant 5 RO1 NS12846)National Institutes of Health (Grant 1 RO1 NS16917)National Institutes of Health (Grant 1 RO1 NS14092-05)National Science Foundation (Grant BNS 77 21751)National Institutes of Health (Grant 5 R01 NS11080)National Institutes of Health (Grant GM-21189

    Effects of Reverberation on Fusion of Lead and Lag Noise Burst Stimuli

    No full text
    The purpose of this investigation was to determine the effects of reverberation on the precedence effect by obtaining thresholds for perception of leading and lagging noise burst stimuli as separate auditory events. In Experiment 1, lag burst thresholds for 4-ms noise bursts were measured in a simulated reverberant and anechoic environment for nine subjects with normal hearing at presentation levels of 10, 20, and 30 dB SL. Results indicated that lag burst thresholds obtained in the reverberant environment were higher than those obtained in the anechoic environment, with no effect of sensation level. In Experiment 2, three new stimulus conditions, two monaural and one binaural control, were employed. For one monaural condition, the stimuli were equal in level and for the other, the leading stimulus was more intense than the lagging stimulus. For the binaural control condition, the stimuli were presented from a perceived spatial location of 0° azimuth. In the monaural and binaural control conditions, lag burst thresholds were lower than those obtained in the reverberant environment of Experiment 1. There was no difference between lag burst thresholds obtained in either environment for the monaural and binaural control conditions compared to the anechoic condition of Experiment 1. Results of Experiment 2 indicate that the higher lag burst thresholds observed in Experiment 1 are not fully explained by a peripheral masking effect

    Effects of Noise and Reverberation on the Precedence Effect in Listeners with Normal Hearing and Impaired Hearing

    No full text
    The purpose of this study was to determine the effects of reverberation and noise on the precedence effect in listeners with hearing loss. Lag burst thresholds (LBTs) for 4-ms noise bursts were obtained for 2 groups of participants: impaired hearing and normal hearing. Data were collected in reverberant and anechoic environments in quiet and noise, at sensation levels of 10, 20, 30, 40, and 50 dB. Results indicated a significant effect of reverberation on LBTs for both participant groups. LBTs increased with sensation level in the reverberant environment and decreased with increasing sensation level in the anechoic environment. There was no effect of hearing loss on LBTs. When the change in LBT due to noise was compared, the effect of noise depended on group and environment, with a greater effect of noise on the performance of listeners with impaired hearing. It is likely that the ability to fuse direct sounds and early reflections is degraded in listeners with impaired hearing and that this contributes to the difficulties experienced by these listeners in reverberation and noise

    Effects of Hearing Loss on Echo Thresholds

    No full text
    Objective: The purpose of this investigation was to determine the effects of hearing loss on the perception of echoes. Design: Echo thresholds were measured for eight listeners with normal hearing and nine listeners with impaired hearing. Pairs of 4-msec noise bursts were presented to each listener with onset-to-onset delays ranging from 2 to 16 msec. Echo thresholds were obtained at signal presentation levels of 10, 20, 30, 40, and 50 dB SL. Results: Results revealed differences between the psychometric functions of the two subject groups. Psychometric functions of the subjects with impaired hearing indicated higher echo thresholds than for the subjects with normal hearing. In addition, echo thresholds at 10 dB SL were significantly higher than echo thresholds measured at 40 dB SL for both subject groups. Conclusion: Listeners with impaired hearing exhibit higher echo thresholds than listeners with normal hearing. The higher echo thresholds for listeners with impaired hearing may account, at least in part, for difficulty on tasks such as localization in everyday listening environments
    corecore