577 research outputs found

    Nanomaterial Based Sensors for NASA Missions

    Get PDF
    Nanomaterials such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene and metal nanowires have shown interesting electronic properties and therefore have been pursued for a variety of space applications requiring ultrasensitive and light-weight sensor and electronic devices. We have been pursuing development of chemical and biosensors using carbon nanotubes and carbon nanofibers for the last several years and this talk will present the benefits of nanomaterials these applications. More recently, printing approaches to manufacturing these devices have been explored as a strategy that is compatible to a microgravity environment. Nanomaterials are either grown in house or purchased and processed as electrical inks. Chemical modification or coatings are added to the nanomaterials to tailor the nanomaterial to the exact application. The development of printed chemical sensors and biosensors will be discussed for applications ranging from crew life support to exploration missions

    Carbon Nanostructures in Biological Sensors for Space and Terrestrial Applications

    Get PDF
    Biosensing devices comprised of carbon nanotubes and nanofibers have been developed for astronaut crew point-of-care. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using carbon nanotube and carbon nanofiber electrodes for biomedical applications. First, a 3x3 electrode device, with each electrode containing 40,000 carbon nanofiber nanoelectrodes was fabricated on silicon using traditional microfabrication processing. The device was demonstrated as a multiplexed immunosensor for simultaneous, label-free detection of cardiac troponin-I, C-reactive protein and myoglobin. Antibodies specific to cardiac troponin-I, C-reactive protein and myoglobin were covalently bound to the CNF surface and were characterized using electrochemical impedance spectroscopy and differential pulse voltammetry. Each step of the modification process resulted in changes in resistance to charge transfer due to the changes at the electrode surface upon antibody immobilization and binding to the specific cardiac protein. The real-time label free detection of the three cardiac markers from pure components and mixtures was demonstrated with high sensitivity, down to 0.2 ng/mL, and good selectivity. Detection in human blood serum did not present false positives from non-specific protein adsorption. More recently, this detection scheme has been applied to inkjet printed carbon nanotube electrodes on Kapton and paper. Printed devices have several unique advantages including simple and inexpensive fabrication. The results demonstrate that these sensors can serve a miniaturized, low cost device for detection of proteins in complex mixtures making this platform a good candidate for early stage diagnosis of myocardial infarction. Future inkjet printed devices can be fabricated have the added advantage in their suitability to be manufactured in an in-space, microgravity environment

    A NASA First in Nano- Technology: First Nano Biosensor for Water Quality Monitoring and Crew Health Management

    Get PDF
    The successful development showed an alternative to radiation-packaging of existing devices, which leaves Missions with expensive electronics that are few generations behind the state-of-the-art

    Wet Chemical Synthesis and Characterization of Nanomaterials for Solar Cell Applications

    Get PDF
    During long term space missions, it is necessary to have a reliable source of energy. Solar cells are an easy and reliable way to convert energy from the sun to electrical energy. NASA has used solar cells manufactured on Earth as an energy source for many of its missions. In order to develop technologies that will enable high efficiency solar cells, we are synthesizing nanostructured materials. A range of nanostructured materials, such as titanium dioxide nanowires, nickel nanoparticles, copper nanoparticles, and silver nanoparticles/nanowires, are synthesized. In this work, we are reporting on the synthesis of these nanomaterials and the electron microscopic characterizations. Nanomaterials were synthesized using well-known protocols, such as the polyol process for silver nanowires and the hydrothermal method to produce titanium dioxide nanowires. The nanomaterials were characterized using Scanning Electron Microscopy (SEM) at NASA Ames and X-ray Photoelectron Spectroscopy (XPS) from the Stanford Synchrotron Radiation Lightsource at SLAC National Acceleratory Laboratory. This study will bring understanding on the chemical structure and morphology of these nanomaterials that will potentially be used for high efficiency solar cells

    Nanobiotechnology in Space Applications

    Get PDF
    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable "smart" therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization

    Carbon Nanofiber Nanoelectrode Arrays for Neural Implant Devices

    Get PDF
    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization

    Carbon Nanomaterials for Biosensing Applications

    Get PDF
    Biosensing devices comprised of carbon nanotubes and nanofibers have been developed for astronaut crew point-of-care. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using carbon nanotube and carbon nanofiber electrodes for biomedical applications. First, a 3x3 electrode device, with each electrode containing 40,000 carbon nanofiber nanoelectrodes was fabricated on silicon using traditional microfabrication processing. The device was demonstrated as a multiplexed immunosensor for simultaneous, label-free detection of cardiac troponin-I, C-reactive protein and myoglobin. Antibodies specific to cardiac troponin-I, C-reactive protein and myoglobin were covalently bound to the CNF surface and were characterized using electrochemical impedance spectroscopy and differential pulse voltammetry. Each step of the modification process resulted in changes in resistance to charge transfer due to the changes at the electrode surface upon antibody immobilization and binding to the specific cardiac protein. The real-time label free detection of the three cardiac markers from pure components and mixtures was demonstrated with high sensitivity, down to 0.2 ng/mL, and good selectivity. Detection in human blood serum did not present false positives from non-specific protein adsorption. More recently, this detection scheme has been applied to inkjet printed carbon nanotube electrodes on Kapton and paper. Printed devices have several unique advantages including simple and inexpensive fabrication. The results demonstrate that these sensors can serve a miniaturized, low cost device for detection of proteins in complex mixtures making this platform a good candidate for early stage diagnosis of myocardial infarction. Future inkjet printed devices can be fabricated have the added advantage in their suitability to be manufactured in an in-space, microgravity environment

    Carbon Nanofiber Electrode Array for Neurochemical Monitoring

    Get PDF
    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report using vertically aligned CNF as neurotransmitter recording electrodes for application in a smart deep brain stimulation (DBS) device. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization

    Carbon Nanofiber Nanoelectrodes for Neural Stimulation and Chemical Detection: The Era of Smart Deep Brain Stimulation

    Get PDF
    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable "smart" therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization

    Carbon Nanomaterials for Biosensing Applications

    Get PDF
    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization
    • …
    corecore