4,521 research outputs found

    Paleoseismic and Slip-Rate Observations along the Honey Lake Fault Zone, Northeastern California, USA

    Get PDF
    The Honey Lake fault is a major strike-slip fault in northeastern California that accommodates northwest-directed right-lateral shear in the northern Walker Lane. We reexamine the fault’s paleoseismic history and slip rate by evaluating a natural stream bank exposure of the fault and offset terrace riser. Structural and stratigraphic relations within the modern stream cut, radiocarbon ages, and a detailed topographic survey of the offset terrace riser are used to estimate a Holocene fault slip rate of 1.7–0.6 mm/yr or more. We also interpret the occurrence of at least four surface-rupturing earthquakes during the last 7025 calendar years before present (B.P.). Three of the surface-rupturing earthquakes occurred prior to 4670 calendar years B.P. and have interevent times that range between 730 and 990 yr. The stratigraphic record is limited after ~4670 calendar years B.P., and records evidence for at least one more subsequent surface-rupturing earthquake

    Transverse excitations of ultracold matter waves upon propagation past abrupt waveguide changes

    Get PDF
    The propagation of ultracold atomic gases through abruptly changing waveguide potentials is examined in the limit of non-interacting atoms. Time-independent scattering calculations of microstructured waveguides with discontinuous changes in the transverse harmonic binding potentials are used to mimic waveguide perturbations and imperfections. Three basic configurations are examined: step-like, barrier-like and well-like with waves incident in the ground mode. At low energies, the spectra rapidly depart from single-moded, with significant transmission and reflection of excited modes. The high-energy limit sees 100 percent transmission, with the distribution of the transmitted modes determined simply by the overlap of the mode wave functions and interference.Comment: 20 pages, 7 figures, under review PR

    Efficient single-cycle pulse compression of an ytterbium fiber laser at 10 MHz repetition rate

    Full text link
    Over the past years, ultrafast lasers with average powers in the 100 W range have become a mature technology, with a multitude of applications in science and technology. Nonlinear temporal compression of these lasers to few- or even single-cycle duration is often essential, yet still hard to achieve, in particular at high repetition rates. Here we report a two-stage system for compressing pulses from a 1030 nm ytterbium fiber laser to single-cycle durations with 5 μ{\mu}J output pulse energy at 9.6 MHz repetition rate. In the first stage, the laser pulses are compressed from 340 to 25 fs by spectral broadening in a krypton-filled single-ring photonic crystal fiber (SR-PCF), subsequent phase compensation being achieved with chirped mirrors. In the second stage, the pulses are further compressed to single-cycle duration by soliton-effect self-compression in a neon-filled SR-PCF. We estimate a pulse duration of ~3.4 fs at the fiber output by numerically back-propagating the measured pulses. Finally, we directly measured a pulse duration of 3.8 fs (1.25 optical cycles) after compensating (using chirped mirrors) the dispersion introduced by the optical elements after the fiber, more than 50% of the total pulse energy being in the main peak. The system can produce compressed pulses with peak powers >0.6 GW and a total transmission exceeding 70%

    Non-Statistical Effects in Neutron Capture

    Full text link
    There have been many reports of non-statistical effects in neutron-capture measurements. However, reports of deviations of reduced-neutron-width distributions from the expected Porter-Thomas (PT) shape largely have been ignored. Most of these deviations have been reported for odd-A nuclides. Because reliable spin (J) assignments have been absent for most resonances for such nuclides, it is possible that reported deviations from PT might be due to incorrect J assignments. We recently developed a new method for measuring spins of neutron resonances by using the DANCE detector at LANSCE. Measurements made with a 147Sm sample allowed us to determine spins of almost all known resonances below 1 keV. Furthermore, analysis of these data revealed that the reduced-neutron-width distribution was in good agreement with PT for resonances below 350 eV, but in disagreement with PT for resonances between 350 and 700 eV. Our previous (n,alpha) measurements had revealed that the alpha strength function also changes abruptly at this energy. There currently is no known explanation for these two non-statistical effects. Recently, we have developed another new method for determining the spins of neutron resonances. To implement this technique required a small change (to record pulse-height information for coincidence events) to a much simpler apparatus: A pair of C6D6 gamma-ray detectors which we have employed for many years to measure neutron-capture cross sections at ORELA. Measurements with a 95Mo sample revealed that not only does the method work very well for determining spins, but it also makes possible parity assignments. Taken together, these new techniques at LANSCE and ORELA could be very useful for further elucidation of non-statistical effects.Comment: 8 pages, 3 figures, for proceedings of CGS1

    Satellite holmium M-edge spectra from the magnetic phase via resonant x-ray scattering

    Full text link
    Developing an expression of resonant x-ray scattering (RXS) amplitude which is convenient for investigating the contributions from the higher rank tensor on the basis of a localized electron picture, we analyze the RXS spectra from the magnetic phases of Ho near the M4,5M_{4,5} absorption edges. At the M5M_5 edge in the uniform helical phase, the calculated spectra of the absorption coefficient, the RXS intensities at the first and second satellite spots capture the properties the experimental data possess, such as the spectral shapes and the peak positions. This demonstrates the plausibility of the adoption of the localized picture in this material and the effectiveness of the spectral shape analysis. The latter point is markedly valuable since the azimuthal angle dependence, which is one of the most useful informations RXS can provides, is lacking in the experimental conditions. Then, by focusing on the temperature dependence of the spectral shape at the second satellite spot, we expect that the spectrum is the contribution of the pure rank two profile in the uniform helical and the conical phases while that is dominated by the rank one profile in the intermediate temperature phase, so-called spin slip phase. The change of the spectral shape as a function of temperature indicates a direct evidence of the change of magnetic structures undergoing. Furthermore, we predict that the intensity, which is the same order observed at the second satellite spot, is expected at the fourth satellite spot from the conical phase in the electric dipolar transition.Comment: 24 pages, 5 figure

    Statistical Mechanics of Kinks in (1+1)-Dimensions

    Full text link
    We investigate the thermal equilibrium properties of kinks in a classical Ï•4\phi^4 field theory in 1+11+1 dimensions. The distribution function, kink density, and correlation function are determined from large scale simulations. A dilute gas description of kinks is shown to be valid below a characteristic temperature. A double Gaussian approximation to evaluate the eigenvalues of the transfer operator enables us to extend the theoretical analysis to higher temperatures where the dilute gas approximation fails. This approach accurately predicts the temperature at which the kink description breaks down.Comment: 8 pages, Latex (4 figures available on request), LA-UR-92-399

    A Rotating, Inhomogeneous Dust Interior for the BTZ Black Hole

    Full text link
    We present exact solutions describing rotating, inhomogeneous dust with generic initial data in 2+1 dimensional AdS spacetime and show how they are smoothly matched to the Banados-Teitelboim-Zanelli (BTZ) solution in the exterior. The metrics, which are the rotational analogues of the 2+1 dimensional LeMaitre-Tolman-Bondi (LTB) family, are described by their angular momentum and one additional constant which, together with the angular momentum, determines the energy density of the dust cloud. The weak energy condition gives a constraint on the angular momentum profile inside the cloud. Solutions can be stationary or time dependent, but only the time dependent solutions can be matched consistently to a BTZ exterior. No singularity is formed in either the stationary or the time dependent cases.Comment: 16 pages, no figure

    Price Discovery and the Accuracy of Consolidated Data Feeds in the U.S. Equity Markets

    Full text link
    Both the scientific community and the popular press have paid much attention to the speed of the Securities Information Processor, the data feed consolidating all trades and quotes across the US stock market. Rather than the speed of the Securities Information Processor, or SIP, we focus here on its accuracy. Relying on Trade and Quote data, we provide various measures of SIP latency relative to high-speed data feeds between exchanges, known as direct feeds. We use first differences to highlight not only the divergence between the direct feeds and the SIP, but also the fundamental inaccuracy of the SIP. We find that as many as 60 percent or more of trades are reported out of sequence for stocks with high trade volume, therefore skewing simple measures such as returns. While not yet definitive, this analysis supports our preliminary conclusion that the underlying infrastructure of the SIP is currently unable to keep pace with the trading activity in today's stock market.Comment: 18 pages, 20 figures, 2 table
    • …
    corecore