20 research outputs found

    Der sozialmedizinische Problempatient in der stationären psychosomatischen Rehabilitation - eine Bestandsaufnahme

    No full text

    An innovative model for clinical video-based on-ward supervision - a descriptive study

    No full text

    Expansion of highly differentiated CD8(+) T-cells or NK-cells in patients treated with dasatinib is associated with cytomegalovirus reactivation

    No full text
    The tyrosine kinase inhibitor dasatinib exerts immunosuppressive effects on T-cells and NK-cells in vitro. However, in some dasatinib-treated leukemia patients, clonal lymphocytosis with large granular lymphocyte (LGL) morphology develops, and this is associated with enhanced therapeutic responses. To elucidate the mechanistic basis for this paradoxical observation, we conducted detailed phenotypic and functional analyses of T-cell and NK-cell populations from 25 dasatinib-treated leukemia patients. All tested patients with LGL expansions (15/16) were cytomegalovirus (CMV) immunoglobulin (IgG) seropositive with high frequencies of CMV-specific CD8(+) T-cells; 5/16 LGL patients also experienced symptomatic CMV reactivation during dasatinib therapy. Expanded T-cell and NK-cell populations exhibited late differentiated (CD27(_)(-) CD57(+)) phenotypes; this was associated with a predisposition to apoptosis within the T-cell compartment and impaired NK-cell cytotoxicity. Only 3/9 non-LGL patients were CMV IgG seropositive. Dasatinib inhibited in vitro lymphocyte functions, similarly in LGL patients and controls. Notably, distinct CD8(high) and CD8(low) T-cell subsets were observed in LGL patients; this phenotypic dichotomy was also apparent in CMV-specific CD8(+) T-cell populations, and exhibited features consistent with antigen-driven activation. In addition, plasma levels of IP-10, IL-6, monokine induced by interferon-c and interleukin-2R were significantly increased in LGL patients. These data provide evidence that dasatinib-associated LGL expansion is linked to CMV reactivation and suggest a potential mechanism for this phenomenon. Leukemia (2011) 25, 1587-1597; doi:10.1038/leu.2011.135; published online 7 June 201

    Activation of Multiple Antibiotic Resistance in Uropathogenic Escherichia coli Strains by Aryloxoalcanoic Acid Compounds

    No full text
    Clofibric and ethacrynic acids are prototypical pharmacological agents administered in the treatment of hypertrigliceridemia and as a diuretic agent, respectively. They share with 2,4-dichlorophenoxyacetic acid (the widely used herbicide known as 2,4-D) a chlorinated phenoxy structural moiety. These aryloxoalcanoic agents (AOAs) are mainly excreted by the renal route as unaltered or conjugated active compounds. The relatedness of these agents at the structural level and their potential effect on therapeutically treated or occupationally exposed individuals who are simultaneously undergoing a bacterial urinary tract infection led us to analyze their action on uropathogenic, clinically isolated Escherichia coli strains. We found that exposure to these compounds increases the bacterial resistance to an ample variety of antibiotics in clinical isolates of both uropathogenic and nonpathogenic E. coli strains. We demonstrate that the AOAs induce an alteration of the bacterial outer membrane permeability properties by the repression of the major porin OmpF in a micF-dependent process. Furthermore, we establish that the antibiotic resistance phenotype is primarily due to the induction of the MarRAB regulatory system by the AOAs, while other regulatory pathways that also converge into micF modulation (OmpR/EnvZ, SoxRS, and Lrp) remained unaltered. The fact that AOAs give rise to uropathogenic strains with a diminished susceptibility to antimicrobials highlights the impact of frequently underestimated or ignored collateral effects of chemical agents
    corecore