71 research outputs found

    Ultrafast charge generation in a semiconducting polymer studied with THz emission spectroscopy

    Get PDF
    Euan Hendry, Mattijs Koeberg, Juleon M. Schins, L. D. A. Siebbeles, and Mischa Bonn, Physical Review B, Vol. 70, article 033202 (2004). "Copyright © 2004 by the American Physical Society."We study the ultrafast charge generation in a semiconducting polymer (MEH-PPV) by measuring the radiated THz field after photoexciting the biased polymer with a femtosecond visible pulse. The subpicosecond temporal characteristics of the emitted wave reflects the ultrafast photoconductivity dynamics and sets an upper limit for charge generation of 200 fs following photoexcitation, and reveals the dispersive nature of charge transport in MEH-PPV. A comparison of the fields radiated from MEH-PPV and the well-characterized model semiconductor system (GaAs) allows for an accurate estimate of the quantum efficiency for charge generation in the polymer, found to be less than 1% . Both observations are consistent with ultrafast charge generation in semiconducting polymers through hot exciton dissociation

    Simultaneous ultrafast probing of intramolecular vibrations and photoinduced charge carriers in rubrene using broadband time-domain THz spectroscopy

    Get PDF
    The ultrafast frequency- and time-resolved complex dielec. responses of photoexcited, single-crystal rubrene at n = 10-30 THz were detd. using ultrafast broadband far-IR spectra. In this frequency range, the responses of both photogenerated mobile charges and intramol. vibrational modes were obsd. simultaneously, both of which vary with time after excitation. The data in conjunction with a theor. model indicate a dynamic blueshift of the 15.5 THz phonon. [on SciFinder (R)

    Interchain effects in the ultrafast photophysics of a semiconducting polymer: THz time-domain spectroscopy of thin films and isolated chains in solution

    Get PDF
    Euan Hendry, Mattijs Koeberg, Juleon M. Schins, H. K. Nienhuys, V. Sundström, L. D. A. Siebbeles, and Mischa Bonn, Physical Review B, Vol. 71, article 125201 (2005). "Copyright © 2005 by the American Physical Society."We compare the generation and decay dynamics of charges and excitons in a model polymer semiconductor (MEH-PPV) in solution and drop-cast thin films, by recording the sub-ps transient complex conductivity using THz time-domain spectroscopy. The results show that the quantum efficiency of charge generation is two orders of magnitude smaller in solution (~10–5) than in the solid film (~10–3). The proximity of neighboring chains in the films apparently facilitates (hot) exciton dissociation, presumably by allowing the electron and hole to separate on different polymer strands. For both samples, photoexcitation leads to the predominant formation of bound charge pairs (excitons) that can be detected through their polarizability. Surprisingly, the polarizability per absorbed photon is a factor of 3 larger in solution than in the film, suggesting that interchain interactions in the film do not result in a substantial delocalization of the exciton wave function

    Direct Observation of Electron-to-Hole Energy Transfer in CdSe Quantum Dots

    Get PDF
    Euan Hendry, Mattijs Koeberg, F. Wang, H. Zhang, C. de Mello Donegá, D. Vanmaekelbergh, and Mischa Bonn, Physical Review Letters, Vol. 96, article 057408 (2006). "Copyright © 2006 by the American Physical Society."We independently determine the subpicosecond cooling rates for holes and electrons in CdSe quantum dots. Time-resolved luminescence and terahertz spectroscopy reveal that the rate of hole cooling, following photoexcitation of the quantum dots, depends critically on the electron excess energy. This constitutes the first direct, quantitative measurement of electron-to-hole energy transfer, the hypothesis behind the Auger cooling mechanism proposed in quantum dots, which is found to occur on a 1±0.15 ps time scale

    Simultaneous ultrafast probing of intramolecular vibrations and photoinduced charge carriers in rubrene using broadband time-domain THz spectroscopy

    Get PDF
    Mattijs Koeberg, Euan Hendry, Juleon M. Schins, Hendrik A. van Laarhoven, Cees F. J. Flipse, Klaus Reimann, Michael Woerner, Thomas Elsaesser, and Mischa Bonn, Physical Review B, Vol. 75, article 195216 (2007). "Copyright © 2007 by the American Physical Society."We determine the ultrafast frequency- and time-resolved complex dielectric responses of photoexcited, single-crystal rubrene in the frequency range of 10–30 THz (330–1000 cm−1) using ultrafast broadband THz spectroscopy. In this frequency range, we observe the response of both photogenerated mobile charges and intramolecular vibrational modes simultaneously, both of which vary with time after excitation. The data in conjunction with a theoretical model indicate a dynamic blueshift of the 15.5 THz phonon
    • …
    corecore