4 research outputs found

    Iron Abundance Diagnostics in High-Redshift QSOs

    Full text link
    The abundance of alpha-process elements such as magnesium and carbon relative to iron measured from the broad emission lines of QSOs can serve as a diagnostic of the star formation and chemical enrichment histories of their host galaxies. We investigate the relationship between Fe/Mg and Fe/C abundance ratios and the resulting Fe II / Mg II 2800A and Fe II / 1900A-blend flux ratios, both of which have been measured in QSOs out to redshifts of approximately six. Using a galactic chemical evolution model based on a starburst in a giant elliptical galaxy, we find that these flux ratios are good tracers of the chemical enrichment of the nuclei. However, the values of these ratios measured in objects at redshifts of approximately six suggest that iron enrichment has occurred more rapidly in these objects than predicted by the assumed elliptical starburst model, under currently favored cosmologies.Comment: 2 pages, to appear in proceedings of IAU Symposium No. 222, The Interplay Among Black Holes, Stars and ISM in Galacti Nucle

    Chemical Abundances in AGN Environment: X-Ray/UV Campaign on the MRK 279 Outflow

    Get PDF
    We present the first reliable determination of chemical abundances in an AGN outflow. The abundances are extracted from the deep and simultaneous FUSE and HST/STIS observations of Mrk 279. This data set is exceptional for its high signal-to-noise, unblended doublet troughs and little Galactic absorption contamination. These attributes allow us to solve for the velocity-dependent covering fraction, and therefore obtain reliable column densities for many ionic species. For the first time we have enough such column densities to simultaneously determine the ionization equilibrium and abundances in the flow. Our analysis uses the full spectral information embedded in these high-resolution data. Slicing a given trough into many independent outflow elements yields the extra constraints needed for a physically meaningful abundances determination. We find that relative to solar the abundances in the Mrk 279 outflow are (linear scaling): carbon 2.2+/-0.7, nitrogen 3.5+/-1.1 and oxygen 1.6+/-0.8. Our UV-based photoionization and abundances results are in good agreement with the independent analysis of the simultaneous Mrk 279 X-ray spectra. This is the best agreement between the UV and X-ray analyses of the same outflow to date.Comment: 28 pages, 7 figures, accepted on 29 Nov 2006 for publication in the ApJ (submission date: 27 Jul 2006
    corecore