51 research outputs found
A Genetic Variant in the IL-17 Promoter Is Functionally Associated with Acute Graft-Versus-Host Disease after Unrelated Bone Marrow Transplantation
Interleukin IL-17 is a proinflammatory cytokine that has been implicated in the pathogenesis of various autoimmune diseases. The single nucleotide polymorphism (SNP), rs2275913, in the promoter region of the IL-17 gene is associated with susceptibility to ulcerative colitis. When we examined the impact of rs2275913 in a cohort consisting of 438 pairs of patients and their unrelated donors transplanted through the Japan Marrow Donor Program, the donor IL-17 197A allele was found to be associated with a higher risk of acute graft-versus-host disease (GVHD; hazard ratio [HR], 1.46; 95% confidence interval [CI], 1.00 to 2.13; P = 0.05). Next, we investigated the functional relevance of the rs2275913 SNP. In vitro stimulated T cells from healthy individuals possessing the 197A allele produced significantly more IL-17 than those without the 197A allele. In a gene reporter assay, the 197A allele construct induced higher luciferase activity than the 197G allele, and the difference was higher in the presence of T cell receptor activation and was abrogated by cyclosporine treatment. Moreover, the 197A allele displayed a higher affinity for the nuclear factor activated T cells (NFAT), a critical transcription factor involved in IL-17 regulation. These findings substantiate the functional relevance of the rs2275913 polymorphism and indicate that the higher IL-17 secretion by individuals with the 197A allele likely accounts for their increased risk for acute GVHD and certain autoimmune diseases
Identification of a Polymorphic Gene, BCL2A1, Encoding Two Novel Hematopoietic Lineage-specific Minor Histocompatibility Antigens
We report the identification of two novel minor histocompatibility antigens (mHAgs), encoded by two separate single nucleotide polymorphisms on a single gene, BCL2A1, and restricted by human histocompatibility leukocyte antigen (HLA)-A*2402 (the most common HLA-A allele in Japanese) and B*4403, respectively. Two cytotoxic T lymphocyte (CTL) clones specific for these mHAgs were first isolated from two distinct recipients after hematopoietic cell transplantation. Both clones lyse only normal and malignant cells within the hematopoietic lineage. To localize the gene encoding the mHAgs, two-point linkage analysis was performed on the CTL lytic patterns of restricting HLA-transfected B lymphoblastoid cell lines obtained from Centre d'Etude du Polymorphisme Humain. Both CTL clones showed a completely identical lytic pattern for 4 pedigrees and the gene was localized within a 3.6-cM interval of 15q24.3–25.1 region that encodes at least 46 genes. Of those, only BCL2A1 has been reported to be expressed in hematopoietic cells and possess three nonsynonymous nucleotide changes. Minigene transfection and epitope reconstitution assays with synthetic peptides identified both HLA-A*2402– and B*4403-restricted mHAg epitopes to be encoded by distinct polymorphisms within BCL2A1
Genetic Variants of Human Granzyme B Predict Transplant Outcomes after HLA Matched Unrelated Bone Marrow Transplantation for Myeloid Malignancies
Serine protease granzyme B plays important roles in infections, autoimmunity, transplant rejection, and antitumor immunity. A triple-mutated granzyme B variant that encodes three amino substitutions (Q48R, P88A, and Y245H) has been reported to have altered biological functions. In the polymorphism rs8192917 (2364A>G), the A and G alleles represent wild type QPY and RAH mutant variants, respectively. In this study, we analyzed the impact of granzyme B polymorphisms on transplant outcomes in recipients undergoing unrelated HLA-fully matched T-cell-replete bone marrow transplantation (BMT) through the Japan Donor Marrow Program. The granzyme B genotypes were retrospectively analyzed in a cohort of 613 pairs of recipients with hematological malignancies and their unrelated donors. In patients with myeloid malignancies consisting of acute myeloid leukemia and myelodysplastic syndrome, the donor G/G or A/G genotype was associated with improved overall survival (OS; adjusted hazard ratio [HR], 0.60; 95% confidence interval [CI], 0.41–0.89; P = 0.01) as well as transplant related mortality (TRM; adjusted HR, 0.48; 95% CI, 0.27–0.86, P = 0.01). The recipient G/G or A/G genotype was associated with a better OS (adjusted HR, 0.68; 95% CI, 0.47–0.99; P = 0.05) and a trend toward a reduced TRM (adjusted HR, 0.61; 95% CI, 0.35–1.06; P = 0.08). Granzyme B polymorphism did not have any effect on the transplant outcomes in patients with lymphoid malignancies consisting of acute lymphoid leukemia and malignant lymphoma. These data suggest that there is an association between the granzyme B genotype and better clinical outcomes in patients with myeloid malignancies after unrelated BMT
Efficacy of RAD001 (everolimus) in peritoneal dissemination of gastric cancer
Peritoneal dissemination occurs frequently in patients with unresectable advanced stage gastric cancer. In this study, we tested mTOR inhibitor RAD001 (everolimus) for efficacy on peritoneal dissemination of gastric cancer.
Using the two cell lines 58As1, a highly peritoneal metastatic cell line, and its parental HSC58, a human scirrhous gastric cancer cell line, we first examined the growth inhibition activity of everolimus in vitro. Methylene blue assay demonstrated a moderate inhibitory effect on both cell lines under normal culture condition. When cells were maintained in hypoxic (1% O2) conditions, growth inhibition by everolimus was greatly reduced in HSC58, whereas the reduction was much smaller in 58As1. In western blotting, phosphorylation of mTOR, and its down-stream signaling molecules, P70S6K and 4E-BP1, were decreased under hypoxic conditions in HSC58. However, in 58As1, phospho-P70S6K and -4E-BP1 remained active state in hypoxic conditions and was suppressed by treatment with everolimus. Cell-cycle analysis showed that the hypoxia-induced G1 arrest was not manifested in 58As1 cells as compared to HSC58 cells. Separately, an in vivo orthotopic mouse model of 58As1 revealed that everolimus significantly reduces peritoneal dissemination as evaluated by quantitative photon counting method.
Taken together, our results suggest that everolimus may have activity against gastric cancer, particularly in cases with peritoneal dissemination
Evaluation of iterative reconstruction method and attenuation correction on brain dopamine transporter SPECT using anthropomorphic striatal phantom
Objective(s): The aim of this study was to determine the optimal reconstruction parameters for iterative reconstruction in different devices and collimators for dopamine transporter (DaT) single-photon emission computed tomography (SPECT). The results were compared between filtered back projection (FBP) and different attenuation correction (AC) methods.Methods: An anthropomorphic striatal phantom was filled with 123I solutions at different striatum-to-background radioactivity ratios. Data were acquired using two SPECT/CT devices, equipped with a low-to-medium-energy general-purpose collimator (cameras A-1 and B-1) and a low-energy high-resolution (LEHR) collimator (cameras A-2 and B-2).The SPECT images were once reconstructed by FBP using Chang’s AC and once by ordered subset expectation maximization (OSEM) using both CTAC and Chang’s AC; moreover, scatter correction was performed. OSEM on cameras A-1 and A-2 included resolution recovery (RR). The images were analyzed, using the specific binding ratio (SBR). Regions of interest for the background were placed on both frontal and occipital regions.Results: The optimal number of iterations and subsets was 10i10s on camera A-1, 10i5s on camera A-2, and 7i6s on cameras B-1 and B-2. The optimal full width at half maximum of the Gaussian filter was 2.5 times the pixel size. In the comparison between FBP and OSEM, the quality was superior on OSEM-reconstructed images, although edge artifacts were observed in cameras A-1 and A-2. The SBR recovery of OSEM was higher than that of FBP on cameras A-1 and A-2, while no significant difference was detected on cameras B-1 and B-2. Good linearity of SBR was observed in all cameras. Inthe comparison between Chang’s AC and CTAC, a significant correlation was observed on all cameras. The difference in the background region influenced SBR differently in Chang’s AC and CTAC on cameras A-1 and B-1.Conclusion: Iterative reconstruction improved image quality on all cameras, although edge artifacts were observed in images captured by cameras with RR. The SBR of OSEM with RR was higher than that of FBP, while the SBR of OSEM without RR was equal to that of FBP. Also, the SBR of Chang’s AC varied with different background regions in cameras A-1 and B-1
Phosphorylation-Coupled Intramolecular Dynamics of Unstructured Regions in Chromatin Remodeler FACT
AbstractThe intrinsically disordered region (IDR) of a protein is an important topic in molecular biology. The functional significance of IDRs typically involves gene-regulation processes and is closely related to posttranslational modifications such as phosphorylation. We previously reported that the Drosophila facilitates chromatin transcription (FACT) protein involved in chromatin remodeling contains an acidic ID fragment (AID) whose phosphorylation modulates FACT binding to nucleosomes. Here, we performed dynamic atomic force microscopy and NMR analyses to clarify how the densely phosphorylated AID masks the DNA binding interface of the high-mobility-group domain (HMG). Dynamic atomic force microscopy of the nearly intact FACT revealed that a small globule temporally appears but quickly vanishes within each mobile tail-like image, corresponding to the HMG-containing IDR. The lifespan of the globule increases upon phosphorylation. NMR analysis indicated that phosphorylation induces no ordered structure but increases the number of binding sites in AID to HMG with an adjacent basic segment, thereby retaining the robust electrostatic intramolecular interaction within FACT even in the presence of DNA. These data lead to the conclusion that the inhibitory effect of nucleosome binding is ascribed to the increase in the probability of encounter between HMG and the phosphorylated IDR
- …